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Abstract
Object detection and tracking are important areas of research in computer vision.

Computer vision solutions to object detection are typically single-frame solutions. To
perform tracking by detection, these solutions typically do object detection on a per-
frame basis, thus losing any temporal information from previous frames. Many multi-
object tracking solutions report the average precision performance on video datasets, but
they do not evaluate the temporal qualities of these solutions. In video, not only the
detection of objects is important but the temporal motion attributes of an object’s path,
such as its velocity, acceleration, and jerk, are important as well. Many implementations
of Object Tracking by Detection systems have run into the problem of motion smoothing
for bounding box paths. This paper focuses on quantifying the smoothness of detected
object paths within some temporal window. We propose using two smoothness metrics
from the field of biokinematics and adapt them for use with detections. Finally, using
these metrics, we evaluate the ground truth and two popular object detectors, at the time
of experimentation (YOLOv3 and Retinanet), on the entire MOT17 dataset. The results
show that the metrics are useful in determining object smoothness, and provide us with
an additional approach to evaluate an algorithm’s performance in object tracking. The
experiments also demonstrate that YOLOv3 produces smoother bounding boxes than
Retinanet. All supplemental graphs and data are shown in our appendix1.
Keywords: Object Detection, Motion, Tracking, Metrics, Evaluation

This article is © 2023 by author(s) as listed above. The article is licensed under a Creative Commons
Attribution (CC BY 4.0) International license (https://creativecommons.org/licenses/by/4.0/legalcode),
except where otherwise indicated with respect to particular material included in the article. The article
should be attributed to the author(s) identified above.

1. Introduction

As we progress in the era of real-time information processing, video object detection and
tracking are becoming increasingly important areas of research in computer vision [1–4].
Object detection in machine learning has greatly increased in popularity with a variety of
different approaches being taken to solve the problem such as those from You-Only-Look-
Once (YOLO) and Faster R-CNN [3, 5]. The ability to detect objects and categorize them
in a scene allows systems to make complex and important decisions regarding real-world
objects.

Object detection performance using deep learning is often evaluated using the Mean
Average Precision (mAP) after Intersection over Union (IOU) thresholding [6]. The mAP
metric is useful for comparing the predicted boxes with the ground truth boxes. However,
when applied to video, it does not provide any additional information about its temporal
quality. In video, bounding box position and class are not the only information present and
the quality of predictions can differ in a multitude of different ways. Many object tracking by
detection systems have run into the problem of bounding box path smoothness and other
forms of motion smoothness problems [7–9]. In this paper, we propose two smoothness
metrics for use with object tracking by detection scenarios.

1Appendix hosted at:https://anonymous.4open.science/r/QPSMVOTD-062D/Object_Smoothness_Appendix.
pdf
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Object path smoothness is vital in qualitative assessments of object predictions in video
and could be useful in determining which object detection methods should be used in produc-
tion systems. Cognitive science research in object recognition has found that a smoothness
constraint on the development of object recognition is necessary for enhanced colour/shape
recognition and binding [10]. To quantify object smoothness, we go to the field of biokine-
matics for inspiration. Since smooth coordinated movements are often good characteristics
for healthy human motor behaviour [11, 12], various smoothness metrics have been devel-
oped in the field of biokinematics to assess sensory-motor performance in patients [11]. We
chose two metrics based on the findings of Balasubramanian et al. [12], namely Log Dimen-
sionless Jerk (LDLJ) and Spectral Arc Length (SAL). We adapt these metrics for use in
bounding box path scenarios and analyze the results of these metrics on the Multi-Object
Tracking Dataset [13].

The main contributions are as follows:

• We propose the use of a temporal intersection over union (TIOU) to evaluate the
speed of a bounding box path.

• We propose modifications to the Log Dimensionless Jerk metric for usage with ob-
ject detection, and evaluate it using two object detection deep convolutional neural
networks and the ground truth.

• We propose modifications to the Spectral Arc Length metric for usage with object
detection, and evaluate it using two different object detection deep convolutional
neural networks and the ground truth.

• We perform statistical tests on the results of applying both metrics to the entire
Multi-Object Tracking (MOT) dataset to demonstrate that there are significant
differences in the performance of each method.

The rest of this paper is organized as follows: Section 2 gives an overview of object
detection networks and the two networks that we use in the experimentation. Section 3
discusses the object detection and tracking metrics that are most commonly used in the
field. It also explains the adaptations made to the metrics. The methods, the experiments,
and the testing of the metrics are reported in Section 4. We summarize the results and
conclude in Section 5.

2. Related Work

2.1. Object Detection Networks

YOLO is a state-of-the-art, real-time object detection system for use on standard object
detection tasks [3]. YOLO is a single-frame, one-stage object detection system that performs
quick but accurate detections using a 53-layer feature extractor known as Darknet-53 [3,
14]. The YOLO version used in this paper is YOLOv3, which contains nine possible anchor
boxes organized in groups of 3 [15]. Each group corresponds to a different scale, allowing a
large variety of predictions in terms of bounding box scales [15]. This means that the final
prediction tensor for YOLOv3 is of shape [N,N, (3∗(4+1+num classes))] where N denotes
the number of grids used to divide the input image, 4 is the bounding box coordinates, and
the additional value is the objectness score (a binary classification value indicating whether
or not something is an object). Redmon and Farhadi [3] use N = 13. The predicted boxes
are then extracted from this tensor using the equations proposed by Redmon et al. [15].

Retinanet is a state-of-the-art, one-stage object detector that shares many similarities
with previous dense, two-stage object detectors such as Region-Proposal Network, and Fast-
RCNN [16]. Retinanet focuses on using a feature pyramid network backbone and a novel
focal loss to deal with the class imbalance in object detection datasets [16]. The feature pyra-
mid backbone constructs efficient multi-scale features from a single image [16]. Retinanet
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uses 9 anchor boxes, grouped into 3 different scales of aspect ratios. This is comparable
to the aspect ratio scales and anchor boxes that YOLOv3 uses. Since the time of starting
experimentation, new object detectors have since been published, including newer versions
of YOLO. In this paper, however, we focus on Retinanet with Resnet-50 (a 50-layer version
of Resnet) and YOLOv3 as the baseline networks to evaluate our proposed metrics.

2.2. Object Detection and Tracking Metrics

One of the most commonly used evaluation metrics is the Intersection over Union (IOU)
[6]. This metric is a useful way to determine true positives and false positives when com-
paring predictions against ground truths [2, 6]. The metric is often used to match predicted
boxes with ground truth boxes based on IOU and then threshold boxes which are not close
to any ground truth. A Generalized Intersection over Union (GIOU) metric has been devel-
oped by Rezatofighi et al. [6] to use an overlap metric as a regression loss. This is useful as
it generalizes the overlap metric for non-overlapping bounding boxes.

For object tracking systems, the Multi-Object Tracking Accuracy (MOTA) is one of the
most widely used metrics to evaluate performance [13]. MOTA is used in the Multi-Object
Tracking (MOT) dataset challenge, although they indicate that it may not serve well as a
single performance measure [13]. The MOTA was initially introduced by Stiefelhagen et al.
[17] and is defined as:

MOTA = 1−
∑

t(FNt + FPt + IDSWt)∑
t GTt

(2.1)

where t is the frame index, GT is the number of ground truth objects, FN is the number of
false negatives, FP is the number of false positives, and IDSW is the number of mismatched
errors. The IDSW can be calculated by counting the number of times an object path switches
identity based on ground truth.

Additionally, the Multiple Object Tracking Precision (MOTP) metric is another com-
monly used metric in tracking challenges. The MOTP denotes the average dissimilarity
between true positives and the corresponding ground truth [13]. For bounding boxes, the
MOTP is defined as:

MOTP =

∑
t,i dt,i∑
t ct

(2.2)

where ct is the number of matches in frame t, dt,i is the l2 distance between all coordinates
of the matched bounding box i with its assigned ground truth object.

Finally, in most object tracking scenarios, the only measure of trajectory quality is known
as the track quality [13]. Track quality is classified into "mostly tracked", "partially tracked"
or "mostly lost" categories based on a percentage measure of successful detections over an
entire scene [13].

2.3. Movement Smoothness

Balasubramanian et al. defines movement smoothness as “a quality related to the contin-
uality or non-intermittency of a movement, independent of its amplitude and duration” [12].
A smoothness measure is a metric that can be given a movement profile and should provide a
valid, sensitive, reliable and practical measure [12]. We focus on the Log Dimensionless Jerk
(LDLJ) and the Spectral Arc Length (SAL) because these are the only existing smoothness
measures in kinematic motor control literature with these properties [12]. Balasubramanian
et al. note that only SAL is reliable against measurement noise [12].

The Log Dimensionless Jerk (LDLJ) is one of the older, most frequently used smoothness
measures [12] and is defined as:
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Figure 1. Example Spectral Arc after frequency thresholding and after amplitude thresh-
olding.

DLJ = − (t2 − t1)
5

v2peak

∫ t2

t1

|d
2v(t)

dt2
|2dt (2.3)

LDLJ = −ln|DLJ | (2.4)
where t1 is the start time, t2 is the end time, vpeak is the peak velocity, and v(t) is the
velocity at time t. The LDLJ is often used to quantify smoothness and coordination in
kinematic tasks to analyze sensorimotor differences in stroke patients [11, 12]. However,
Balasubramanian et al.[12] have found the LDLJ to be relatively sensitive to sensor noise.

The Spectral Arc Length (SAL) is a novel smoothness metric that is more reliable and
robust than other previously used smoothness metrics [12]. The intuition behind this met-
ric is that movements can be thought of as being composed of numerous low-frequency
components and high-frequency interfering components [11]. Based on this concept, Bala-
subramanian et al. define the SAL as the negative arc length (length along a curve) of the
amplitude and frequency-normalized Fourier Magnitude of the speed profile [11, 12]. The
SAL has been used in kinematic research as well as in assessing surgical skills with regard
to the surgeons’ operational smoothness [18]. The SAL is defined as:

ηsal ≜ −
∫ ωc

0

√
(
1

ωc
)2 + (

dV̂ (ω)

dω
)2dω (2.5)

V̂ (ω) ≜
V (ω)

V (0)
(2.6)

where ωc is the frequency threshold, ω is the frequency, V̂ (ω) is the normalized amplitude
of the speed profile at frequency ω, V (ω) is the amplitude of the speed profile at frequency
ω, and thus V (0) is the amplitude of the speed profile at frequency 0.

Note that SAL requires two hyper-parameters: a frequency threshold and an amplitude
threshold. Balasubramanian et al. use a frequency threshold of ωc = 40πrad/s and an
amplitude threshold of 0.05. These values were tuned for patient trials in kinematic research
and so may not work well for our purposes. An amplitude threshold of 0.05 only allowed for
1 frequency bin in our use case, and thus made the spectral analysis useless as we require a
curve from which we could extract arc length (see subsection 4.4). An example spectral arc
graph can be seen in Fig. 1.
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3. Proposed Metrics

In this paper, we adapt the LDLJ and SAL to measure bounding box smoothness over
time. We begin by constructing a speed profile for the proposed bounding boxes. We
need a single metric that encompasses the smoothness of a box in terms of the bounding
box position (x and y) and the change in scale (w and h). Since IOU encodes the shape
properties of the objects compared to a region and gives a normalized measure of their area
[6], we can use the formula 1− IOU between bounding boxes at times t and t+1 to encode
the speed profile of a box at time t. Therefore, we formulate the speed profile as a temporal
IOU (TIOU) with the following equations:

vTIOU (t) = 1− TIOU

vIOU (t) = 1− |At ∩At+1|
|At ∪At+1|

(3.1)

vTGIOU (t) = 1− TGIOU

vTGIOU (t) = 1−
(
TIOU − |Ct \ (At ∪At+1)|

|Ct|

)
(3.2)

where vTIOU (t) is the TIOU at time t, vTGIOU (t) is the Temporal Generalized IOU
(TGIOU) at time t, At is the bounding box at time t, and Ct is the smallest enclosing
convex box for At and At+1.

If an object A is stationary and does not move between time t and t+1, the vTIOU (t) = 0
and vTGIOU (t) = 0. The maximal value for these metrics is based on the smallest possible
overlap. These maximal values are vTIOU (t) = 1 and vTGIOU (t) = 2 because the IOU has a
lower bound of 0 and the GIOU allows for a lower bound of -1 (where a value between 0 and
-1 represents the distance of the bounding boxes from one another ) [6]. We assume that a
correct bounding box does not likely move beyond itself within one frame, considering 24
frames per second (fps) is the frame rate of most video cameras and of the MOT17 dataset
videos. Therefore, we focus on the IOU formulation only. We demonstrate the effectiveness
of using the TIOU as a measure of the bounding box movement profile in subsection 4.2 by
plotting the TIOU of an object path and its smoothed variants.

3.1. Adapted Log Dimensionless Jerk

To use the TIOU as a speed profile in LDLJ, some modifications are required. First, a
non-moving object would have a vTIOU (t) = 0, which could lead the DLJ term in the ln of
Eq.(2.4) to be zero. To prevent this we modify the LDLJ as follows:

LDLJobj = −ln|1 +DLJ | (3.3)
This allows for DLJ = 0 and it does not greatly affect the LDLJ calculation. When

comparing two objects, the object with the higher LDLJ is smoother (see Fig. 3a). As an
additional modification, the vpeak is not set per trial and is instead set for all trials. Since we
are using the TIOU as a measure of speed, there is a theoretical peak of 1 (the maximally
overlapping bounding boxes results in a TIOU value of 1), and so we set vpeak = 1.0.
Finally, we need to find an appropriate window length N , to perform the LDLJ calculation.
Although the entire scene may be used, using a rolling window for the LDLJ calculation
allows for an online measure of network performance in terms of bounding box prediction
smoothness. This is illustrated in subsection 4.3.
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3.2. Adapted Spectral Arc Length

To use the SAL with TIOU speed profiles, we take the discrete Fourier transform of
vTIOU (t) profiles. We employ a sliding Discrete Fourier Transform (DFT) [19] to perform
an online metric calculation. The sliding DFT requires a minimum of N samples (where N
is the window length) before the DFT is valid, so we do not calculate the SAL for the first
N samples. When comparing two objects, the one with the higher SAL is smoother (see
Fig. 3b). Additionally, to adapt the SAL, we do not normalize per trial, as this leads to
the inability to compare inter-trial results. To resolve this, we do not normalize by V (0) in
Eq.(2.6). Finally, as we are adopting this spectral arc length from another field, we perform
some tests on the frequency and magnitude thresholds to find appropriate parameters by
analyzing the effect of the parameters on the final SAL as explained in subsection 4.4.

4. Experiments

In this section, we go over our methodology and experimental results for evaluating and
analyzing LDLJ and SAL. In subsection 4.2, we show that the TIOU (vTIOU (t)) is a suitable
speed profile for a bounding box. In subsection 4.3, we find the appropriate window length
for LDLJ and SAL on bounding box smoothness calculations using a single object path
as an evaluation of the hyperparameter. In subsection 4.4, we find the best amplitude
and frequency thresholds that allow the most information to be collected for calculating
the SAL. In subsection 4.5, we examine the intuition that the ground-truth path is the
smoothest. Finally, in subsection 4.6, we analyze the performance of YOLOv3, Retinanet,
and the Ground Truth object paths using the LDLJ and SAL.

4.1. Methods

To evaluate and analyze the feasibility of using LDLJ and SAL as smoothness metrics,
we use the Multi-Object Tracking (MOT) Dataset as it contains a variety of scenes with a
large variety of clearly labelled object paths [13]. Scenes in this dataset have a frame rate
of 24fps. To match network detections to object paths, we use the IOU metric to find the
closest match for each ground truth and assign the predictions accordingly. This method
of assigning ground truths to predictions is how networks are trained in object detection
internally [3, 14–16]. Finally, as all evaluations are on a sliding window, we use a stride of
4 frames as this is the minimum number of frames required for the jerk to be calculated.

4.2. IOU Experimentation

Smoothness measures require a speed signal from which we can measure the smoothness
of an object’s path. Instead of using four signals (x, y, w, h), a smoothness measure that
could encompass all four of these signals would be ideal. We did not directly use the norm
of the change in these four signals as x, y operates on a different scale than w, h but instead,
use the TIOU.

To demonstrate the effectiveness of the TIOU as the speed signal according to the def-
inition given in section 3, we formulate an experiment using the path of object ID 1 in
MOT17-09 predicted by YOLOv3. We compare these paths against paths generated from
their moving average. If our smoothness measure is correct, larger moving averages will
have smoother profiles. The moving average is defined as:

MAt =
1

w

t∑
i=t−w

Pi (4.1)

where t is the frame number, w is the window length, and Pi is the sample at frame i.
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(a) (b)

Figure 2. Plots of experiments with moving average on the effect of vTIOU (t) and IOU
between predicted and ground truth.

The short moving average has a w = 8, the medium moving average has a w = 16
and the long moving average has a w = 32. All of these paths’ center (x, y) values are
plotted in Fig. 5 in Appendix A. In Fig. 2a, we plot the TIOU of these bounding box
paths and in Fig. 2b, we plot the IOU of the predicted bounding box paths against their
corresponding ground truth. From these figures, we see that the moving average reduces the
spikes in movement in coordinate space, smoothing the TIOU plot correspondingly. This
demonstrates the effectiveness of the TIOU as a speed signal for measuring the smoothness
of an object’s path.

4.3. Determining Window Length

To effectively use the LDLJ and SAL, we need to determine a suitable time window N
that will encompass enough information about object paths. It should be noted that larger
window lengths allow for more information about an object’s motion characteristics. To
determine a suitable time window, we begin by plotting the LDLJ and SAL at the following
range of window lengths in terms of frames: {8, 16, 32, 64, 96, 128}.

The plots for these experiments can be seen in Figs. 6-7 in Appendix B. We note that
the decrease in the smoothness of the last few collected points in the figures is due to
ground truth moving in and out of frame. Based on these experiments we note that LDLJ
is more sensitive to the window size than SAL. To choose a window size, we must balance
local information with global information. A small window has much local information, but
not enough global information about the movement profile of the bounding box. Similarly,
a large window can often flatten out local information in favour of global information.
Considering this balance, the window length we choose is 64 frames as this window allows
for the ground truth to have changes in smoothness (allowing intratrial comparisons). We
plot the graph of the moving LDLJ and SAL with a window of 64 frames on object path ID
1 in MOT17-09 in Figs. 3a-3b. The mean LDLJ and SAL values are shown in Tables 1-2.

https://anonymous.4open.science/r/QPSMVOTD-062D/Object_Smoothness_Appendix.pdf
https://anonymous.4open.science/r/QPSMVOTD-062D/Object_Smoothness_Appendix.pdf
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(a) (b)

Figure 3. Plots for a window size of 64 on MOT17-02 object path 1 (higher is smoother).
Results are shown for ground truth, YOLOv3 and Retinanet as a running plot.

Mean Log Dimensionless Jerk
Window Length 8 Frames 16 Frames 32 Frames 64 Frames 96 Frames 128 Frames
Ground Truth −1.63e−6 −2.20e−4 −1.83e−2 −4.85e−1 -1.82 -3.35
YOLO −5.86e−5 −6.88e−3 −4.20e−1 -3.46 -6.01 -7.92
Retinanet −6.07e−5 −7.16e−3 −4.44e−1 -3.54 -6.10 -7.98

Table 1. Mean LDLJ values at a variety of window lengths (higher is smoother) for
MOT17-02 object path 1.

Mean Spectral Arc Length
Window Length 8 Frames 16 Frames 32 Frames 64 Frames 96 Frames 128 Frames
Ground Truth -1.28 -2.20 -5.97 -13.19 -20.04 -27.28
YOLO -2.08 -8.88 -28.86 -78.41 -151.01 -246.27
Retinanet -2.93 -8.95 -26.88 -74.10 -139.63 -215.67

Table 2. Mean SAL values at a variety of window lengths (higher is smoother) for
MOT17-02 object path 1.

4.4. Determining Amplitude and Frequency Thresholds

SAL as defined in Eq.(2.5)-(2.6) requires two thresholding parameters [11]. Fig. 1 is an
example of the SAL of a movement profile. These thresholds are useful in making SAL
robust to noise [12]. We note, however, that the original parameters provided by [11] were
not suitable for the object bounding box paths as they were initially found for patient
sensorimotor trials.

We do a grid search on frequency threshold and amplitude threshold at a variety of ranges.
In [11], they use 5 as their frequency threshold which corresponds to their sampling frequency
of 100Hz, we began with this value and incremented it by 5 up until 35 as our corresponding
sampling frequency is 24Hz. Any frequency bin beyond the frequency threshold tested is
ignored to calculate SAL. For the amplitude threshold, we begin with an exceptionally small
value of 1e−5 and in log scale, we increase this threshold until we reach 1e−1. We begin
with this small value to allow more information into the SAL calculation and try to find
the effect that increasing this threshold may have. Once the spectral arc reaches either the
frequency threshold or the amplitude threshold, all other frequency bins are ignored.

The results of our experimentation are presented in Table 3 and a few insights are readily
apparent. Firstly, we note that changes in the amplitude threshold are minimal. We choose
an amplitude threshold of 1E−5 as a lower amplitude threshold is preferable in allowing more
information to be included in the SAL calculation. Finally, the frequency threshold has a
scaling effect on the Spectral Arc Length up until a threshold of 25. Frequency thresholds
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Amplitude Threshold

Frequency Threshold

1e−5 1e−4 1e−3 1e−2 1e−1

5 -7.72 -7.72 -7.72 -7.72 -7.21
10 -8.67 -8.67 -8.67 -8.65 -8.59
15 -9.59 -9.59 -9.59 -9.56 -8.59
20 -10.60 -10.60 -10.60 -10.56 -9.22
25 -13.19 -13.19 -13.19 -13.13 -11.55
30 -13.19 -13.19 -13.19 -13.13 -11.55
35 -13.19 -13.19 -13.19 -13.13 -11.55

Table 3. Spectral Arc Length Threshold Experimentation on MOT17-02 object path
1 (higher is smoother) of the Ground Truth path. This is used to view the effect of
parameters on the Spectral Arc Length to choose suitable parameters.

Figure 4. SAL plot for frequency threshold 25 and amplitude threshold 1e−5 of MOT17-
02 object path 1.(Note higher is smoother)

beyond 25 frequency bins do not affect the SAL calculation. Due to these findings, we
choose to use a frequency threshold of 25 and an amplitude threshold of 1e−5 for object path
analysis. The plot for this set of hyperparameters is presented in Fig. 4 and the remaining
set of hyperparameters can be found in Appendix C, Figs. 8-11. These experiments show
that a frequency threshold of 25 and an amplitude threshold of 1e−5 are useful for bounding
box path smoothness evaluation.

4.5. Ground Truth Smoothness Analysis

It may seem intuitive to believe that ground truth is the smoothest path however, we
develop an experiment using the moving averages from subsection 4.2 and the ground truth
of that very same object path to demonstrate otherwise. We plot the LDLJ and the SAL
of those object paths using the hyperparameters chosen after experiments from subsections
4.3-4.4 in Figs. 6-11. This analysis of the moving average paths and the ground truth shows
that the ground truth is not always the smoothest path and simply matching the ground
truth does not necessarily lead to the smoothest bounding box motion characteristic.

4.6. Complete Analysis of LDLJ and SAL in YOLO, and Retinanet

Previous subsections present experiments on the path of object ID 1 in the MOT17-09
scene. In this subsection, we report the LDLJ and SAL averages on all object IDs in all
scenes in the MOT Dataset. We plot the box plot of the LDLJ and SAL values on all object
IDs in all scenes in MOT in Figs. 12-13 of Appendix D. The histogram plots of the LDLJ
and SAL means are all shown in Appendix D Figs. 15-16.

If these metrics are indicative of object path smoothness, we would expect that the
ground truth would be the smoothest. In our experimentation in subsection 4.6 with these

https://anonymous.4open.science/r/QPSMVOTD-062D/Object_Smoothness_Appendix.pdf
https://anonymous.4open.science/r/QPSMVOTD-062D/Object_Smoothness_Appendix.pdf
https://anonymous.4open.science/r/QPSMVOTD-062D/Object_Smoothness_Appendix.pdf
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Metrics LDLJ SAL

Ground Truth −0.21± 0.18 −50.82± 15.33

YOLO −0.65± 0.64 −57.85± 12.04

Retinanet −0.74± 0.74 −65.69± 10.96

Table 4. Mean LDLJ and mean SAL values for all networks as well as Ground Truth on
all objects that are present in the ground truth, and predicted by YOLOv3 and Retinanet
in all scenes of the Multi-Object Tracking Dataset. Note that for both LDLJ and SAL,
higher is smoother.

Metric F value P <

SAL IOU 910.69 0.0001
LDLJ IOU 641.14 0.0001

Table 5. Results of one-way ANOVA test on the mean SAL and mean LDLJ of all objects
in the ground truth, and predicted by YOLOv3 and Retinanet in all scenes of the MOT
Dataset. This shows that both the SAL and the LDLJ generate distinct distributions
based on the smoothness of the objects detected.

metrics, this expectation holds (see Table 4). Although LDLJ is known to be unreliable
when affected by sensor noise [12], the object detection scenario has very little such noise.
In Table 4 we see that both, the LDLJ and the SAL, claim that Retinanet is worse than
YOLO for motion smoothness. Retinanet has many more object proposals than YOLO [15,
16] and thus may have more high-frequency noise in object paths for the long term. This
may explain the reason for its lower smoothness metrics.

To show that the LDLJ and the SAL properly differentiate between the ground truth,
YOLOv3, and Retinanet, we perform two one-way ANOVA tests on the mean SAL and
the mean LDLJ of all object IDs that are present in the ground truth and predicted by
YOLOv3 and Retinanet from the MOT Dataset. To maintain comparability, if an object
is not predicted by either YOLOv3 or Retinanet, it is not included in the one-way ANOVA
tests. The results of these ANOVA tests can be seen in Table 5. With p < 0.0001 for both
SAL and LDLJ, we decided to conduct a multi-comparison post hoc test to determine which
population means are significantly different from the others. As the population means were
found to be normally distributed with D’Agostino’s K-squared Test, we conducted a Tukey’s
Honest Significant Difference (HSD) Test with α = 0.05. The results of this test on the LDLJ
means can be seen in Table 6 and the results on the SAL means can be seen in Table 7.
As the null hypothesis for Tukey’s HSD test is that all population means are the same, we
note that both LDLJ and SAL can differentiate all population means. This supports that
both the LDLJ and SAL can be used as reliable ways to determine the smoothness of object
paths generated.

Group 1 Group 2 Mean Diff p adjusted lower upper Reject H0

Ground Truth Retinanet -0.53 0.001 -0.57 -0.50 True
Ground Truth YOLOv3 -0.44 0.001 -0.48 -0.41 True

Retinanet YOLOv3 -0.09 0.001 -0.05 0.13 True

Table 6. Multiple Comparison of LDLJ Means using Tukey HSD with α of 0.05. A
reminder that H0 is that all population means are the same.
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Group 1 Group 2 Mean Diff p adjusted lower upper Reject H0

Ground Truth Retinanet -14.87 0.001 -15.68 -14.05 True
Ground Truth YOLOv3 -7.03 0.001 -7.84 -6.21 True

Retinanet YOLOv3 7.84 0.001 7.02 8.66 True

Table 7. Multiple Comparison of SAL Means using Tukey HSD with α of 0.05. A
reminder that H0 is that all population means are the same.

5. Conclusion

In this paper, to quantify bounding box path smoothness, we adapted two smoothness
metrics from the field of kinematics for use in object bounding box path analysis in object
tracking by detection challenges. We show the process by which we adapt the smoothness
metrics for bounding box path analysis, and show that these metrics can quantify object
path smoothness. We provided implementation details for LDLJ and SAL on object paths in
video, and we analyzed the window size for both metrics and found the best hyperparameters
for SAL (subsections 4.3-4.4) for this purpose. Finally, we compare and analyze the results
of using these metrics on all objects, in all scenes of the MOT17 dataset after detection
by both YOLOv3 and Retinanet. These results showed that the proposed metrics, LDLJ
and SAL adapted for temporal IOU, can differentiate multi-object tracking systems by their
smoothness and that YOLOv3 tends to produce smoother bounding boxes than Retinanet.

In the future, we plan to investigate the differentiability of these metrics to use them
for regularization in object tracking by detection systems such as recurrent video object
detectors. This would enable a system that not only detects objects but attempts to predict
smoother object paths. Experimental results have found that animals can better recognize
objects with smoother input [10]. This suggests that learning from temporal input, instead
of static frames, can improve object recognition in machine vision systems. Similarly, bias-
ing the production of smooth predictions through smoothness regularization may improve
learning in object detection systems.
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