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Abstract

Machine learning in computer vision has become an invaluable aspect of research on

object detection and object tracking. While advancements in current research aim

to improve the matching of predictions with ground truth bounding box annotations

from humans, to our knowledge, very little work is currently being done on analyzing

bounding box path smoothness. Bounding box path smoothness is useful as it can

contribute to improve machine vision. Additionally, it provides another metric by

which researchers can assess the capabilities and qualities of video object detection

systems.

In this work, we investigate the problem of object bounding box path smoothness

in video object detection systems. We begin by studying the fields of convolutional

neural networks for object detection systems, and smoothness metrics from biokine-

matics research. Two smoothness metrics from this field, namely Log Dimension-

less Jerk (LDLJ) and Spectral Arc Length (SAL), are adapted for usage in object

bounding box paths and an analysis is done to justify the adaptations made. An

in-depth analysis of two bounding box proposal generation systems is done using the

two adapted smoothness metrics and validated against the ground truth bounding

box paths. The analysis showed that both LDLJ and SAL can differentiate between

all tested object bounding box path generation systems. Additional experiments
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demonstrate that the human annotations are the most smooth bounding box paths,

however, the object detection systems tested can be improved naively by doing a

moving average over proposed paths.

Finally, we adapt the smoothness metrics as loss functions in a video object de-

tection system to analyze if it could be used as a regularizer on video object detection

using convolutional neural networks. We propose, train and analyse a model on video

object detection with 7 training regimens which vary only in the regularizer. We

found that using a smoothness regularizer can improve object path smoothness by a

small amount and conclude with a list of possible future work.
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Nomenclature

V̂ (ω) The normalized amplitude value of a movement profile at frequency ω

ω A frequency

ωc A frequency threshold

σ(x) Sigmoid function

APc The average precision of a particular class c

Bp The set of predicted bounding boxes

bp The predicted bounding box

bgt The ground truth bounding box

bgt The set of ground truth boxes

bMAR The smallest convex bounding that encompasses all boxes.

Ih The image height

Iw The image width

pi The precision value at a particular iteration i
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Pkh The kth anchor box’s’ height

Pkw The kth anchor box’s width

ri The recall value at a particular iteration i

Sh The number of sliding windows in the height dimension of the image

Sw The number of sliding windows in the width dimension of the image

sx The sliding window x index

sy The sliding window y index

tx The regressed x offset of the region proposal

ty The regressed y offset of the region proposal

V (ω) The amplitude value of a movement profile at frequency ω

C Set of total classes

c Index of class

N Total number of inference samples

n Index of inference sample
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Acronyms

ALDLJ Adapted Log Dimensionless Jerk.

ASAL Adapted Spectral Arc Length.

CNN Convolutional Neural Network.

DLJ Dimensionless Jerk.

GIOU Generalized Intersection over Union.

IOU Intersection over Union.

LDLJ Log Dimensionless Jerk.

LSTM Long Short Term Memory.

mAP Mean Average Precision.

MOT Multi-Object Tracking.

SAL Spectral Arc Length.

SSD Single Shot Detector.
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YOLO You Only Look Once.

YOLOW You Only Look Once Windowed.
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Glossary

Batch updates A batch update is a multi-example backpropagation weight update

where the error is aggregated over multiple examples.

Centroid A centroid is a box which only has two values, [w, h]. It it is always

presented as being in the centre of another box.

Convolutional neural network A convolutional neural network is typically a net-

work that has a convolutional layer which performs the feedforward pass as a

convolution between a kernel and the input set. The kernel acts as the weights

which are to be optimized for the loss function.

Dense network A dense network is a network where each unit in a given layer is

densely connected to every unit in the next layer. Typically this is represented

as a matrix multiply between the inputs and the weights.

Dimensionless A dimensionless quantity is a quantity with no physical units and

is thus a pure number. It is the product of a function which cancels all the

physical units.

Recurrent network A recurrent network is a dense network which has, as input, a

function of its output at a previous timestep.
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Stochastic updates A stochastic update is a single example backpropagation weight

update.

xi



Contents

Abstract i

Acknowledgments iii

Publications iv

Nomenclature vi

Acronyms viii

Glossary x

Contents xii

List of Tables xv

List of Figures xvii

Chapter 1: Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Proposed Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Chapter 2: Background 10
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Deep Learning for Computer Vision . . . . . . . . . . . . . . . . . . . 11

2.2.1 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Convolutional Neural Networks . . . . . . . . . . . . . . . . . 13
2.2.3 Long Short Term Memory Networks . . . . . . . . . . . . . . 15

2.3 Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 Two Stage Detectors . . . . . . . . . . . . . . . . . . . . . . . 17

xii



2.3.2 Single Stage Detectors . . . . . . . . . . . . . . . . . . . . . . 20
2.3.3 Validation Metrics . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.4 Tracking-by-Detection . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Motion Smoothness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.1 Log Dimensionless Jerk . . . . . . . . . . . . . . . . . . . . . . 30
2.4.2 Spectral Arc Length . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Chapter 3: Measuring Smoothness in Video Object Detection 33
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Object Detection Networks . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Object Detection and Tracking Metrics . . . . . . . . . . . . . 37
3.3 Motion Smoothness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.1 Bounding Box Speed Profiles . . . . . . . . . . . . . . . . . . 39
3.3.2 Smoothness Metrics . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.3 Adapted Spectral Arc Length . . . . . . . . . . . . . . . . . . 43

3.4 Evaluation of Smoothness Metrics . . . . . . . . . . . . . . . . . . . . 45
3.4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.2 Validating IOU-based Speed Profile . . . . . . . . . . . . . . . 45
3.4.3 Determining Window Length . . . . . . . . . . . . . . . . . . 48
3.4.4 Determining Magnitude and Frequency Thresholds . . . . . . 50
3.4.5 Ground Truth Smoothness Analysis . . . . . . . . . . . . . . . 52
3.4.6 Validating LDLJ and SAL using YOLO and Retinanet . . . . 53

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Chapter 4: Regularization with Smoothness Metrics for Improved
Video Object Detection and Tracking 57

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Converting Metrics to Loss . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1 LDLJ Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.2 ASAL Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Chapter 5: Conclusions and Future Work 69
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.1 Additional Testing . . . . . . . . . . . . . . . . . . . . . . . . 71

xiii



5.2.2 Loss Hyperparameter Searching . . . . . . . . . . . . . . . . . 71
5.2.3 Regulatization . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Appendix A: Determining Window Length Figures 82

Appendix B: Determining Amplitude and Frequency Thresholds 84

Appendix C: Validating ALDLJ and ASAL using YOLO and Retinanet 86

xiv



List of Tables

2.1 Table of the mAP and time taken for inference of different object de-

tection methods [40]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Mean LDLJ values at a variety of window lengths (higher is smoother)

for MOT17-02 object path 1 . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Mean SAL values at a variety of window lengths (higher is smoother)

for MOT17-02 object path 1 . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Spectral Arc Length Threshold Experimentation on MOT17-02 object

path 1 (higher is smoother) of the Ground Truth path. This is used to

view the effect of parameters on the Spectral Arc Length in order to

choose suitable parameters. . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Mean LDLJ and mean SAL values for all networks as well as Ground

Truth on all objects that are present in the ground truth, and predicted

by YOLOv3 and Retinanet in all scenes of the Multi-Object Tracking

Dataset. Note that for both LDLJ and SAL, higher is smoother. . . . 53

3.5 Results of one-way ANOVA test on the mean SAL and mean LDLJ

of all objects in the ground truth, and predicted by YOLOv3 and

Retinanet in all scenes of the MOT Dataset. . . . . . . . . . . . . . . 54

xv



3.6 Multiple Comparison of LDLJ Means using Tukey HSD with α of 0.05.

Reminder that H0 is that all population means are the same. . . . . . 55

3.7 Multiple Comparison of SAL Means using Tukey HSD with α of 0.05.

Reminder that H0 is that all population means are the same. . . . . . 55

4.1 The mAP of all three training regimens, with all three relative learning

rates, on the entirety of the test set. Reminder that β is the relative

learning rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 The results of the ANOVA test on the mAP values of all three training

regimens with all three relative learning rates on the test set. . . . . . 65

4.3 The LDLJ and SAL values of all three training regimens with all three

relative learning rates on the entirety of the test set (higher is better).

β is the relative learning rate. . . . . . . . . . . . . . . . . . . . . . . 65

4.4 The results of the ANOVA test on the ALDLJ values of all three train-

ing regimens with all three relative learning rates on the test set. . . . 66

4.5 The results of the ANOVA test on the ASAL values of all three training

regimens with all three relative learning rates on the test set. . . . . . 66

xvi



List of Figures

1.1 An example of object detection from video [13]. . . . . . . . . . . . . 3

1.2 Consecutive object detections on 6 frames from the Multi-Object Track-

ing dataset. The object with the green bounding box (labelled A)

demonstrates the smoothness problem on the spatial bounding box

properties. The object with the white bounding box (labelled B)

demonstrates the smoothness problem on the temporal bounding box

properties. Note that the white bounding box disappears in frame 4. 5

2.1 A fully connected neural network with an image as input. Note that

each pixel-node pairing has it’s own trainable weight. . . . . . . . . . 14

2.2 A single layer convolutional neural network with a 3x3 kernel and no

padding. The convolution does the matrix multiply on a sliding window

over the image. This is illustrated by the top figure and the bottom

figure. Note that only the kernel has trainable weights. These are

reused spatially. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Example of two boxes and their respective IOU. . . . . . . . . . . . . 23

3.1 The YOLOv3 architecture in detail. Note that the dimensions of S1,

S2 and S3 are based off the retinal strides and the shape of the input

image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

xvii



3.2 The Retinanet architecture in detail. Note that the dimensions of the

outputs are based off the retinal strides and the shape of the input image. 37

3.3 Example of the bounding box of an object at time t− 1 and time t as

well as their respective temporal IOU. . . . . . . . . . . . . . . . . . 40

3.4 Example Spectral Arc after frequency thresholding and after magni-

tude thresholding. Note that the first threshold reached is the one

used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Plot of YOLOv3’s predicted box center coordinate x (left) and y (right)

value, and their mobile average in Scene MOT1709 for object ID 1 over

time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6 Plots of result of the experiments with moving average on the effect

of vIOU(t) (left) over timestep in frames. Plot of the result of the

experiments with moving average on the IOU against ground truth

bounding boxes (right) over timestep in frames. . . . . . . . . . . . . 47

3.7 Plots for a window size of 64 on MOT17-02 object path 1 (Note higher

is smoother). Results are shown for ground truth, YOLOv3 and Reti-

nanet as a running plot. . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.8 SAL plot for frequency threshold 25 and magnitude threshold 1e−5 of

MOT17-02 object path 1.(Note higher is smoother) . . . . . . . . . . 52

3.9 Left is the LDLJ plot of the YOLOv3 predicted path, moving average

of the YOLOv3 predicted path and, the ground truth. Right is the

SAL plot of the YOLO predicted path, moving average of the YOLOv3

predicted path, and the ground truth. GT is the ground truth. . . . . 52

xviii



4.1 The architectural drawing of the window segment of the YOLOW net-

work. Note that we split the probabilities and the coordinates from

the final tensor output of YOLOv3. . . . . . . . . . . . . . . . . . . . 60

4.2 The network architecture for You Only Look Once Windowed. Note

s1, s2, s3 are the three retinal scales. Their dimensions are based off the

retinal strides and the input image size. They are separated by whether

they represent the coordinates (coords) or the probability (probs) of

classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Example input for a training sample window. . . . . . . . . . . . . . 62

xix



1

Chapter 1

Introduction

As we progress in the era of real-time information processing, video object detection

and tracking are becoming increasingly more important areas of research in computer

vision [23, 29, 39, 44]. Having the ability to detect objects and categorize them in a

scene allows systems to be able to make complex and important decisions regarding

real-world objects.

There have been many breakthroughs with deep learning approaches to object de-

tection, in particular deep convolutional neural networks [29, 39, 41]. These models

are often initially trained on large image recognition datasets such as the ImageNet

Large Scale Visual Recognition Challenge [44] and then transfer learning is applied

to learn object detection datasets (such as Common Objects in Context [29]). These

object detection systems make their predictions by doing both bounding box regres-

sion and image classification. Typically, object detectors perform single frame object

detections [23, 29, 38, 39].

Image object detection and object tracking are fundamentally important prob-

lems in computer vision [23, 38]. In recent years, the field has seen many interesting

solutions involving deep neural networks [26, 38, 39, 41]. With the advent of newer
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more complete image and video datasets, interesting questions regarding the use and

application of these object detectors and object trackers have arisen [29, 32]. For ex-

ample, single image object detectors are often used in tracking by detection scenarios

and yet unable to take advantage of temporal information [23]. More recently, since

deep neural networks are being used for object detection and tracking, it has become

more feasible to use these systems in industrial applications [46, 50]. Using object

tracking by detection allows for video analysis to determine and track changes in

paths that objects may take. For example, self-driving cars should track pedestrians,

surveillance cameras should track people and all these systems should generate good

paths along the object track [36].

Deep neural networks have been a sound alternative to the previous kernel meth-

ods and have produced amazing results by taking advantage of large repositories of

labelled datasets. Many current object detection networks such as You-Only-Look-

Once from Redmon et al. [38] or Faster R-CNN from Ren. et al. [41] are single

image object detectors that perform very well. These single image object detectors

lack temporal information in video object detection and do not maintain any visual

memory of a particular video sequence. The ability to have a visual memory of a

video sequence can aid in spatial and temporal based object recognition and seg-

mentation [51]. Others have replaced or added memory modules to the convolutions

aiding networks in detecting objects in video [5] or in predicting objects in video [13].

An example of the output of the predictions from video object detectors can be seen

in Fig. 1.1. Bounding boxes are shown with the corresponding class prediction at

the top and a network confidence score beside predicted class label. Note the blurry

or partially obstructed pedestrians are not well classified. In video object detection,
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bounding boxes are predicted in each image frame of a video and an object path

is defined by these boxes. Often this path is jerky as the boxes are not accurately

detected or are not detected at all because of obstructions or occlusions.

Figure 1.1: An example of object detection from video [13].

1.1 Motivation

Object detection and object tracking systems that have a temporal signal may allow

for spatiotemporal pattern recognition and thus could be useful for generating com-

plex temporal patterns to match object trajectories as they move in more complex

ways. These complex trajectories and unforeseen occlusions are important to be able

to mitigate and predict as they can severely affect object tracking quality. Timing

critical problems such as self-driving cars [32], drone path projection [8], and pedes-

trian detection [50] require that the network be robust to complex object path noise.

Leal-Taixé uses a smoothing term to overcome the unsmooth noise in object paths

from the Multi-Level Hungarian multi-object tracker [22]. Since single image object

detectors do not have a temporal signal, previously predicted objects can be dropped

in a frame and quickly forgotten. This can result in jittering of object paths, leading
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to non-smooth object paths. This can be well demonstrated in videos where blurry

or partially obstructed pedestrians can drop bounding boxes quickly, and bound-

ing boxes must change aspect ratios to accommodate moving or turning pedestrian.

Examples of some of these can be seen in the static image of Fig. 1.1.

Smooth paths are important as they allow human interpreters of the system to

better understand and predict object paths [47]. In addition, smooth object paths

allow for more robust and stable implementations of algorithms that use these object

paths, such as those involved in collision detection in self-driving cars [22, 32] and

those involved in Unmanned Arial Vehicles (UAV) [55].

1.2 Problem Definition

Since single image object detectors, video object detectors and object trackers are only

trained on metrics that relate to ground truth paths [14, 38, 39, 40, 41, 49] there is no

direct way for networks to learn to predict smoother boxes. Instead, the assumption

is that ground truth bounding boxes are the smoothest possible paths and no other

smoothness regularization is required. Smoothness is an intuitive concept in motion

and can be seen in the examples from Fig. 1.2. This example comes from an object

detector trained on a variety of classes. For Fig. 1.2 we focus on bounding boxes

tracking people. The green bounding box (labelled A) changes in width and height,

and jitters in its centroid location. The white bounding box (labelled B) changes in a

temporal sense, in that it drops the bounding box for one frame, making it temporally

unsmooth.
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Figure 1.2: Consecutive object detections on 6 frames from the Multi-Object Tracking
dataset. The object with the green bounding box (labelled A) demon-
strates the smoothness problem on the spatial bounding box properties.
The object with the white bounding box (labelled B) demonstrates the
smoothness problem on the temporal bounding box properties. Note that
the white bounding box disappears in frame 4.

Object path smoothness is vital in qualitative assessments of object predictions

in video and could be useful in determining which object detection methods should

be used in production systems. Cognitive science research in object recognition has

found that smoothness constraints in object recognition is necessary for enhanced

colour/shape recognition and binding [53]. Studies have found that infants familiar-

ized with smooth objects are better at identifying those objects than infants who are

familiarized with unsmooth or discontinuous objects [47]. Thus having some way of
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measuring and quantifying object path smoothness would be useful for the domain

of object detection and object tracking.

In this thesis, we address a few important research questions regarding smoothness

in object detections. They are:

• What is the definition of object path smoothness?

• How do the state-of-the-art single image object detectors differ with respect to

object path smoothness?

• What is the effect of the use of object path smoothness as a regularization

method for a temporal object detector?

By answering these questions, we explore the field of motion smoothness as it

relates to bounding box paths in object detection systems.

1.3 Proposed Solutions

In approaching this thesis, we began by first finding suitable definitions of smoothness

and ways to quantify smoothness. We tackle the idea that smoothness is inherent

in ground truth boxes and formulate a hypothesis that we test. These smoothness

metrics could be used to aid networks with a temporal signal to predict object paths

which are more robust to noise in movement and inherent network noise in bounding

box generation. We validate this hypothesis by including our proposed smoothness

metrics in an optimization algorithm for a video object detection model to develop a

smooth video object detector.

To define object path smoothness, we research smoothness literature in physics

and biokinematics and find appropriate definitions which can be adapted. We devise
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experiments to evaluate if these mathematical models can be used for computer vision.

We select a video object dataset and a few bounding box generation methods which

are then evaluated using the adapted smoothness metrics. This experimentation

provides us with two insights: it helps confirm the effectiveness of the proposed

smoothness metrics and helps evaluate the smoothness of the state-of-the-art object

detectors in video object detection scenarios against traditional well-known object

detection metrics. Using these metrics, we compare the differences in object path

smoothness amongst these single image object detectors. Finally, we train a windowed

temporal object detector and regularize it with the adapted smoothness metric. We

evaluate the differences in performance of this regularized windowed temporal object

detector.

1.4 Contributions

The following are the key contributions from this thesis:

• We explore the field of single image and video object detection using convolu-

tional neural networks and report that, to our knowledge, motion smoothness

is not a field that is discussed in object detection. We research mathematical

models which have been used in biokinematics for human motion and propose

two new metrics for measuring bounding box path smoothness by adapting the

models from biokinematics. An example bounding box path can be seen by

following the green (A) or white (B) bounding box in Fig. 1.2.

• The mathematical models from motion smoothness in biokinematics are found

to be either jerk-based or non-jerk-based models. In order to adapt these models

to bounding box paths, we perform an extensive study to evaluate both the
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adaptations made to these mathematical models and the effectiveness of these

metrics.

• The proposed adapted mathematical models for motion smoothness in bounding

box paths are used to evaluate You Only Look Once (YOLO)v3 and Retinanet,

two state-of-the-art approaches to object detection in computer vision and val-

idate that the metrics can be used to perform qualitative analysis to compare

video object detection models. All comparisons are done against the baseline

of human generated bounding box proposals from the ground truth.

• We develop methods to integrate the metrics in the training regimen to regu-

larize the models to perform smooth object detection. Then we evaluate the

effects that the metrics have on the final performance of these models and per-

form some qualitative analysis on these final predictions.

1.5 Organization of Thesis

This thesis is organized in the following way:

• Chapter 2 presents a background study of concepts regarding deep learning

models for object detection, temporal object detection and tracking, and motion

smoothness from biokinematics.

• Chapter 3 presents our study of the smoothness metrics for use in video object

path smoothness including a validation of these metrics using the Multi-Object

Tracking Dataset and two well known single image object detectors.

• Chapter 4 uses the proposed smoothness metric and adapts them as losses.

These losses are used to regularize a network that has some temporal signal.
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Then we evaluate the impact of using these adapted smoothness metrics as loss

on the network performance.

• Chapter 5 concludes and summarizes all the findings of this thesis and suggests

possible future works.
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Chapter 2

Background

2.1 Introduction

This chapter presents the background concepts relevant to commonly used deep learn-

ing models for computer vision such as convolutional neural networks, object detec-

tion in single images and sequences of images, object tracking by detection, and

motion smoothness. Convolutional neural networks are the building blocks for neural

network-based object detection in both single images and videos. Motion smoothness

is an important concept in biokinematics and is important to this thesis for deter-

mining how to quantify object path smoothness in video object detection scenarios.

Section 2.2 presents the background necessary for deep learning in computer vi-

sion, including backpropagation, convolutional neural networks, and recurrent neural

networks. Section 2.3 presents the relevant background information for object de-

tection in computer vision including the precise nature of the task, current convolu-

tional architectural strategies and metrics for evaluation. Section 2.4 discusses the

mathematical models found in biokinematics relating to motion smoothness. Finally,

Section 2.5 summarises the previous sections.
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2.2 Deep Learning for Computer Vision

In the past, pattern recognition based object detection in images was composed of

two parts: a segmenter which extracted objects of interest and a feature extractor

that extracted only the important patterns in an image [25]. The introduction of

gradient-based learning from Rumelhart et al. [43] and the addition of the works

of Lecun et al. [24] allowed for future work from Lecun et al. [25] to develop a

gradient-based feature extraction method that proved extremely useful to the field of

computer vision.

2.2.1 Neural Networks

Rumelhart et al. introduce the concept of a new learning procedure named back-

propagation on neuron-like units [43]. The principal idea here is that the outputs of

the units are linear functions of the input and the weights of the neuron-like units [43].

In essence, there are two phases of each learning step as described by Rumelhart et al.

[43]. The first step is a forward pass which begins by taking input and determining the

state of hidden units through some function which has parameters W , see equations

(2.1)-(2.2) for a single layer example.

Ypred = F (W (i),Wb(i), X(i)) (2.1)

F (W (i),Wb(i), X(i)) = σ(W (i)X(i) +Wb(i)) (2.2)

where Ypred is the predicted matrix output, X(i) is the input matrix at training

index i, W (i) is the set of trainable parameters for the function F at training index
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i, Wb(i) is a set of trainable parameters for the bias of function F at training index i,

F is the function which details the forward pass, and σ is the element-wise activation

function.

Rumelhart et al. began their formulation of these nBertasius2018eural networks

and the backpropagation method with the simple concept of the feedforward neural

network. This feedforward neural network is as described above, with an input that

is modified by a function F and a set of weights W and some activation function σ,

producing an output Ypred. The formulation of the backpropagation algorithm and

the chain rule partial derivation allows for these functions to be stacked on top of each

other quite easily in what Lecun et al. call the simplest multilayer learning machine

[24]. An example of a two-layer neural network can be described by equation (2.3).

This type of network is often called a dense network, as every unit in a layer is fully

connected to its inputs.

Ypred = F2(W2(i),Wb2(i), F1(W1(i),Wb1(i), X(i))) (2.3)

where Ypred is the same as in Equation 2.1, and each F , W and Wb is subscripted

to denote independent functions, weights and biases.

The performance of the model can be calculated using a cost function that eval-

uates the error of a model [24, 43]. Rumelhart et al. define the total error as in

equation (2.4) [43],

E =
1

2

∑
i

∑
j

(ypred(j,i) − ytrue(j,i))2 (2.4)

where the i is the index of a particular set of input-output pairs during training,
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j is the index over output units, ypred(j,i) is the predicted output from the forward

pass, and ytrue(j,i) is the desired output [43]. Lecun et al. do not specify a specific

cost function, and instead leave it as a generalized differentiable function [24].

Once outputs and error have been calculated, the second phase begins. The second

phase is the backwards pass. The backwards pass starts with computing the partial

derivative ∂E/∂Y [43]. These calculated values allow us to, through the chain rule,

backpropagate this error and adjust the weights. The weights are adjusted using the

following gradient descent equation [24, 43]:

W (i) = W (i− 1)− η ∂E

∂W (i− 1)
(2.5)

where W (i) are the weights at training index i, η is the learning rate, ∂E/∂W (i)

is the gradient of the error with respect to the weights at training index i.

Certain formulations of the backpropagation algorithm use centroid, where weight

updates are made per sample. Other formulations are batch updates, where weight

updates are aggregated for a certain number of samples and updated all at once.

Lecun et al. were one of the first to discuss the advantages and disadvantages of

stochastic vs batch updates, and a variety of other modern tricks in neural networks

such as example shuffling, input normalization, and nonlinear activation functions

[24]. Many of these techniques have become standardized techniques in neural network

algorithms and machine learning.

2.2.2 Convolutional Neural Networks

Lecun et al. observed that simple fully-connected feed-forward neural networks could

not maintain the topology of the input [25]. As images have specific local structures
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and pixels have a high spatial correlation, Lecun et al. presented convolutional neural

networks (CNN) to extract local features [25]. Fig. 2.1 represents the typical setup

for a fully connected neural network with an image as input. For comparison, Fig.

2.2 represents a single layer convolutional neural network architecture. Convolutional

neural networks differ from fully-connected feed-forward neural networks in that the

parameters that are trained are the parameters for the kernel in the convolution. As

a reminder, a convolution is an operation defined as in equation (2.6). In computer

vision, convolutions were used with predefined filters to extract particular image fea-

tures such as edges.

(f ∗ g)(t) =

∫ t

m=0

f(t)g(t− τ)dτ (2.6)

where f and g are the convolutions operands, t is typically the time-domain

(though it is not necessary that it be time), and τ is a free variable.

Figure 2.1: A fully connected neural network with an image as input. Note that each
pixel-node pairing has it’s own trainable weight.
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Figure 2.2: A single layer convolutional neural network with a 3x3 kernel and no
padding. The convolution does the matrix multiply on a sliding window
over the image. This is illustrated by the top figure and the bottom
figure. Note that only the kernel has trainable weights. These are reused
spatially.

The network presented by Lecun et al. paper dubbed LeNet-5 and uses two

convolutional layers, each followed by subsampling layers which perform an average

pool in a two by two area, and two fully connected layers to perform digit recognition

[25]. This network with minor variations achieved an error rate of 0.8% in digit

classification [25]. This CNN showed that in the field of computer vision there is no

need to hand-craft feature extractors and that we can train feature extractors using

gradient-based learning methods [25]. The major boom in computer vision and many

other fields in computer science can be attributed to the rise of computing power and

the availability of larger datasets [18, 26, 29, 32, 44].

2.2.3 Long Short Term Memory Networks

In an effort to use these neuron-like units to learn temporal patterns, Hochreiter

and Schmidhuber proposed a novel, gradient-based method called Long Short Term
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Memory (LSTM) [17]. The LSTM is a recurrent network which has become one of the

standards in temporal learning [13, 33, 45]. Hochreiter and Schmidhuber designed the

LSTM for learning with gradient-based methods and enforces a constant error flow

through the LSTM internal states [17]. The LSTM became one of the few methods

to learn long term and short term patterns in excess of 1000 steps [17].

Interestingly, these same LSTM units can be used in convolutional neural net-

works. Shi et al. proposed a convolutional LSTM in order to benefit from the spatial

learning enabled by convolutional neural networks, and to learn the temporal patterns

using the LSTM units [45]. The convolutional LSTM is created by using LSTM units

for each of the units in the convolutional kernel. Shi et al. show that the convolu-

tional LSTM is able to learn spatiotemporal patterns by demonstrating its efficacy in

precipitation nowcasting [45].

2.3 Object Detection

In the field of computer vision, object detection is vital as it is one of the many tasks

involved in understanding visual scenes [4, 26, 29, 35, 36, 37]. In the past decade,

there have been many major improvements in object detection due to improvements

in deep neural network algorithms, computer vision techniques, and access to large

databases containing labelled images [9, 23, 28, 29, 38, 41, 44]. The object detection

task is characterized by having a system that accomplishes two computer vision tasks

simultaneously: object localization, and object classification. Object localization is a

computer vision task in which an algorithm must, given an image, infer the smallest

bounding box that contains the entirety of a desired object [41]. Object classification

is a computer vision task in which a model must, given an image of an object, infer



2.3. OBJECT DETECTION 17

the class of that object [41]. The classes are often defined by the dataset used to train

the model and can vary, for example, the pascal VOC class has 20 labelled object

classes [9], and the OpenImagesV4 dataset has 600 classes labelled [21].

Object detectors can be placed into two categories: a two-stage object detector or

one stage object detector [18, 28, 30, 38]. Two-stage object detectors perform object

localization in the first stage and object classification in the second stage. One stage

object detectors perform both object localization and object classification in a single

processing stage.

2.3.1 Two Stage Detectors

Two-stage detectors are known for being accurate yet slow [18, 28]. For many years,

the state-of-the-art object detectors were two-stage object detectors [28]. The two-

stage object detection approach was initially proposed by Girshick et al. through the

method they coined R-CNN: Regions with Convolutional Neural Networks (CNN)

features [15]. This approach has two separate stages. The first stage is a category-

independent object region proposal stage which provides a large number of possible

regions containing objects [15, 41]. Girshick et al. adopt methods from external

modules for proposing regions. The speed improvement gained by Ren et al. is

due to their use of a region proposal network which they train for generating object

proposals using prior anchor boxes [41]. These anchor box proposals are generated

in a sliding window over the entire image providing a large variety of different region

proposals (see Section 2.3.1 details anchor boxes in more detail).

The second stage is the feature extraction and object classification stage [15, 41].

Girshick et al. generate a 4096-dimensional feature vector using a convolutional
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feature extractor for each region proposal and train a linear SVM to classify the

proposed regions [15]. To speed up the computation, Girshick R. use a convolutional

feature extractor and then extract the regions from the feature extractor itself [14].

Ren et al. speed up this computation again by training a neural network classifier

instead of using a linear support vector machine (SVM) for the classification of the

proposed regions [41]. One of the novel ideas proposed by Ren et al. allows for feature

maps used in the region proposal network to be passed forward to the classifier so

that no feature information is lost [41]. The ideas from Girshick et al, Ren et al., and

Dai et al. inspired the state-of-the-art for many years due to the robustness of the

region proposals provided by two-stage object detection [6, 14, 15, 18, 41].

Anchors

Anchor boxes are useful prior template boxes with different scales and aspect ra-

tios that allow object detectors to avoid directly regressing the bounding box val-

ues: [bx, by, bw, bh]. An anchor box is composed of the scale/aspect ratio of the box:

[Pw, Ph]. Anchor boxes allow region proposals to be generated using offset values that

modify anchor boxes. As there are multiple anchor boxes in a sliding window, the

region proposals must also include a confidence value for each anchor box [39, 41].

Anchor boxes with a variety of scales allow for object detectors to predict objects

with a large variety of sizes.

Given the network output of [tx, ty, tw, th], the equation to compute the bounding

box values in pixel space are given by equations (2.7)-(2.10).

bx =
σ(tx) + sx

Sw
Iw (2.7)
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where bx is the final box center x value, tx is the tensor x output, sx is the grid x

index from which tx was extracted, Sw is the output tensor grid width and Iw is the

final image width.

by =
σ(ty) + sy

Sh
Ih (2.8)

where by is the final box center y value, ty is the tensor y output, sy is the grid y

index from which ty was extracted, Sh is the output tensor grid height and Ih is the

final image height.

bw =
Pkwe

tw

Sw
Iw (2.9)

where bw is the final box width value, tw is the tensor width output, k is the

anchor index from which tw was extracted, Pkw is the k anchor box’s template width,

Sw is the output tensor grid width, and Iw is the final image width.

bh =
Pkhe

th

Sh
Ih (2.10)

where bh is the final box width value, th is the tensor height output, k is the anchor

index from which th was extracted, Pkh is the k anchor box’s template height, Sh is

the output tensor grid height, and Ih is the final image height.

Ren et al. originally proposed using template anchor boxes [41]. They used 9

template anchor boxes. The 9 anchor boxes were split into three different retinal

scales and three different aspect ratios. The three retinal scales are {1282, 2562, 5122}

and the three aspect ratios are {1 : 1, 2 : 1, 1 : 2} [41]. Ren et al. choose the scale

and aspect ratio independent of the distribution of bounding boxes in the dataset
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[41]. The scales and aspect ratios are based on the intuition that three different

scales will allow a large variation of bounding boxes to be predicted. Redmon, and

Farhadi take a different approach to choose the optimal bounding boxes [39]. They

pick better prior anchor boxes based on the distribution of the bounding box aspect

ratios in the dataset [39, 40]. This is done by running a k-means clustering algorithm

on the translation-invariant Intersection over Union (IOU) of the anchor box priors

and bounding boxes in the training set (see equation (2.11)) [39].

diou(box, centroid) = 1− IOU(box, centroid) (2.11)

where diou is the distance which is minimized by k-means clustering between a

box and a centroid, and IOU is defined in Equation (2.12).

This allowed Redmon, and Farhadi to use fewer anchor boxes in YOLOv2, k = 5

and yet achieve an mAP that greater than the one achieved by using the same aspect

ratios as those presented in [41]. In YOLOv3, Redmon, and Farhadi found that using

a combination of three different retinal scales with three data mined anchor priors

led to the best results [40].

2.3.2 Single Stage Detectors

Single Stage Detectors are well known for being exceptionally fast object detectors

with a trade-off in accuracy [18, 30, 39, 41, 49]. Single-stage detectors use a single

CNN to predict both class and anchor box offset without a second feature extraction

and classification stage [18]. Two of the first single-stage object detectors are the

Single Shot Detector (SSD) [30] and You Only Look Once (YOLO) [38]. SSD uses

a fully convolutional neural network that predicts the class and anchor box offsets
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while YOLOv1 reframes the whole problem as a regression problem that tries to

immediately regress the bounding box coordinates and the class probabilities [38].

A newer version of YOLO regress anchor box offsets instead of directly regressing

bounding box coordinates [39, 40]. The use of anchor box offsets led to an increase

in mAP for YOLOv2 [39]. The release of SSD, YOLOv1 and YOLOv2 led to an

increase in popularity of one-stage object detectors such as Retinanet, EfficientDet,

and others [5, 10, 28, 33, 40, 49].

With this increase in popularity, many new object detectors attempt to use a

variety of different techniques to overcome the accuracy trade-off of moving from two-

stage detectors to single-stage detectors. One of the more successful breakthroughs

for single stage object detection is the use of a novel loss function developed by Lin

et al. [28]. They use the feature pyramid architecture from Lin et al. [27] and Liu et

al. [30] as well as output predictions at three retinal scales. This inspired Redmon,

and Farhadi to release YOLOv3 which also produced output predictions at the three

different retinal scales [40]. Table 2.1 shows YOLOv3 as the fastest network and

Retinanet as the best performing network.
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Table 2.1: Table of the mAP and time taken for inference of different object detection
methods [40].

Method mAP time in ms

YOLOv3-608 33.0 51

YOLOv3-418 31.0 29

YOLOv3-320 28.2 22

Retinanet-50-500 32.5 73

Retinanet-101-500 34.4 90

Retinanet-101-800 37.8 198

FPN-FRCN 36.2 172

R-FCN 29.9 85

SSD513 31.2 125

DSSD513 33.2 156

2.3.3 Validation Metrics

To assess the performance of object detectors, a metric must be used which combines

the performance of both bounding box regression analysis and object classification.

The most commonly used metric in object detection is the mean average precision

metric [9, 18, 29]. Note that this metric must be applied to predictions after de-

termining true or false positive rates based on the Intersection over Union (IOU) of

the ground truth and the predicted bounding box [9]. Therefore, we will first cover

Intersection over Union before discussing Mean Average Precision.
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Intersection over Union

The Intersection over Union (IOU) metric is an evaluation criterion for bounding

box regression and is used to determine the true-positive or false-positive rates of an

object detector [9, 42]. The IOU is a ratio of the intersection area of the ground truth

box with the predicted box to the union of the area of the ground truth box with

the predicted box. IOU is a good evaluation criterion as it evaluates how good our

prediction box is without having to recreate the exact ground truth x, y, w, h values.

Additionally, the IOU is scale-invariant which means that it focuses on the area of

the shapes regardless of the size of the bounding box [42]. This rewards boxes that

heavily overlap with the ground truth. See equation (2.12) for the IOU equation.

IOU =
area(bp ∩ bgt)
area(bp ∪ bgt)

(2.12)

where bp is the predicted bounding box, and bgt is the ground truth bounding box.

Figure 2.3: Example of two boxes and their respective IOU.

In the evaluation of true-positive or false-positive rates, ground truth matches are

assigned to one of the predicted bounding boxes with the highest IOU. This is done by

first sorting predictions in descending order of confidence. Predictions are matched to
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ground truth if their IOU is above a certain threshold and they have the same label.

Everingham et al. use a threshold of 50%, whilst Lin et al. use the average over

multiple IOU ranges of thresholds beginning at 50%, ending at 95% in increments of

5% [9, 29]. Beginning with the predicted bounding box having the highest IOU, we

assign matches until either the ground truth has already been matched or the class has

not been predicted correctly. For each positive match, the number of true positives

is incremented. If the predicted box has a different class than a matched ground

truth or has no matched ground truth, the number of false positives is incremented.

Finally, if a ground truth has no matched predicted bounding boxes, the number of

false negatives is incremented.

Generalized Intersection over Union

Although the IOU metric is the most popular evaluation metric for segmentation,

object detection and tracking, it is not commonly used for bounding box loss [42].

This is mainly because the IOU metric is not differentiable everywhere and flattens to

zero if predicted boxes do not overlap with ground truth boxes [42]. This means that

the IOU metric would have no gradient after flattening to zero and so would not be

able to suitably train a network [42]. Before the paper presented by Rezatofighi et al.,

networks trained for bounding box regression used an `2 or `1 norm (see equations for

their bounding box regression [14, 38, 39, 40, 42]) and yet evaluated their networks

using the IOU metric. Rezatofighi et al. have shown that although previous methods

do train networks for bounding box regression, there are many cases where two boxes

may have the same loss using `1 or `2 loss but these same boxes have different IOU

metrics [42]. For this reason, they introduced the Generalized Intersection over Union
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(GIOU) metric [42]. The GIOU metric is formulated as shown in equation (2.15).

`1 =
N∑
i=1

|ytrue(i)− ypred(i)| (2.13)

where i is an index of a bounding box set which has maximal index N . ytrue(i) is

the ground truth of box index i and ypred(i) is the matched bounding box for index i.

`2 =
N∑
i=1

(ytrue(i)− ypred(i))2 (2.14)

where i is an index of a bounding box set which has maximal index N . ytrue(i) is

the ground truth of box index i and ypred(i) is the matched bounding box for index i.

GIOU = IOU − area(bMAR \ (ba ∩ bb))
area(bMAR)

(2.15)

where bMAR is the smallest convex box that encompasses both bounding boxes ba,

and bb, which is also known as the minimum area rectangle. Therefore, the GIOU

varies in the range of [−1,1]. Negative values only occur when the enclosed bounding

box bMAR is greater than the IOU [42]. The IOU and GIOU can be used to define loss

functions as in equations (2.16)-(2.17). Note that because of the particular ranges of

both the IOU and GIOU, the `GIOU has a range of [0,2] and the `IOU has a range of

[0,1].

`GIOU = 1−GIOU (2.16)

`IOU = 1− IOU (2.17)
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Rezatofighi et al. show that the `GIOU is useful for training current object detectors

such as YOLO V3 and Faster R-CNN, and provides an improvement of 4%− 8% in

mAP over traditional `1 and `2 methods [42].

Mean Average Precision

To calculate the Mean Average Precision (mAP), one must calculate the average

precision of each class in a set of classes. After calculating true positive, false positive

and false negative rates using a particular thresholded IOU, one must calculate the

precision and recall of each class using equations 2.18-2.19. Using these equations,

the average precision can be calculated using equation (2.20).

pi =
tpi

tpi + fpi
(2.18)

where i is an iteration, tpi is a the true positive at iteration i, fpi is the false

positive at iteration i.

ri =
tpi

tpi + fni
(2.19)

where i is an iteration, tpi is a the true positive at iteration i, fni is the false

negative at iteration i.

AP =
N∑
n=1

pn(rn − rn−1) (2.20)

where n is an individual inference sample out of the set of all inference samples

N .

The mAP is the mean of all of the average precisions of a set of classes as seen
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in equation (2.21). Although initially proposed by Everingham et al., the standard

mAP calculation is the one that was proposed by Lin et al. [9, 29].

mAP =

∑C
c=1APc
|C|

(2.21)

where c is a class in the set of all classes C.

2.3.4 Tracking-by-Detection

Visual object tracking is an important field in computer vision and, in prior years

has been viewed as a separate task than object detection [37]. Object trackers must

be robust to the complex motion characteristics that objects may undertake such

as rotation, scaling and even partial occlusion [37]. Classical models require many

specifications of the particular observation models as well as robust data association

[36]. Many prior works use a variety of different techniques such as kernel tracking

[37], using optical flow as an estimation of motion [7]. More recent work involves

tracking in between detection frames, using deep learning methods to learn to track,

and more recently, tracking-by-detection [23].

Held et al. train a CNN to learn the generic relationship between object motion

and object appearance to track objects [16]. They require initial object proposals but

can run quickly, nearing the 100 frames per second mark. Others perform fully end-

to-end object tracking, leveraging the temporal abilities of recurrent neural networks

to pass object information between frames such as [33, 36]. In particular, Ning et al.

use a YOLO detector to perform detections at regular intervals and use a recurrent

neural network to directly regress those object detections in between detection frames.

Others frame the entire problem as a reinforcement learning problem. Zhang et al.
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formulate the problem as a sequential decision-making problem where their network

is trained on the reward of taking actions [54].

With the advent of better object detectors, new tracking systems often require

complex interweaving of object tracking mechanisms and object detection mechanisms

[10]. Feichtenhofer et al. propose a simpler method of tracking by detection through

the use of multi-frame object detection and the use of feature correlation to inform the

bounding box regressors and the classification proposals [10]. Leal-Taixé defines that

the tracking-by-detection paradigm as being composed of a detector that performs

detection on the entire scene and a tracker which performs the final data association

step [22].

Object tracking is a difficult problem as the variety of scenes and camera angles

are huge [22, 23]. Leal-Taixé differentiates two different scales of object tracking:

• Microscopic tracking which focuses on tracking individuals and specific objects.

• Macroscopic tracking which focuses on the density flow of crowds and typical

motion tendencies.

In this thesis, we address microscopic tracking.

Smoothness

An interesting problem in object tracking is object motion estimation and object

identification. Smoothness is a very important factor in preserving the main mo-

tion in a scene [7]. Even in humans, the principle of continuity and smoothness of

motion is important for infants to develop object identity [47]. Spelke et al. define

the smoothness principle as being “related to the principle of inertia in classical me-

chanics, whereby objects undergo linear motion at a constant speed in the absence of
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forces...”[47].

If we compare object tracking in computer vision systems and models of object

recognition in vertebrate visual systems, there are clear elements in biological visual

systems that leverage temporal smoothness [53] which are not modelled in any object

detection or object tracking system.

Although single image and video-based object detection systems are impressive,

the predicted object paths are jerky and inconsistent. Objects appear and disappear

quickly in-between frames and boxes change rapidly. To our knowledge, none of

the object detection or tracking systems include motion smoothness as part of their

training schema.

2.4 Motion Smoothness

“Object Recognition is one of the most important functions of the vertebrate visual

system” [53]. In biological visual systems, temporal smoothness has been theorized

as one of the many features that may be heavily taken advantage of [53]. In the

many studies on the mature visual system, there is evidence that a sequential view

of an object helps in associating the object in a manner that helps recognition [53].

Spelke et al. suggest that the human visual system may be affected by the smoothness

of object motion [47] and Wood J. suggests that a smoothness constraint in object

recognition in the visual system aids in object recognition capabilities [53].

Smoothness, being an often qualitative metric, can be difficult to quantify. In the

field of biokinematics motion smoothness is an important aspect to quantify. In this

research paradigm, there are many smoothness measures, and Balasubramanian et

al. clarify a few requirements for the smoothness measures to be useful [1]:
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• It must be dimensionless. That is it must be a quantity with no physical units

and is thus a pure number.

• It must have a monotonic response to motion, which in the case of smoothness

measures, is to be entirely nonincreasing.

• It must be sensitive to changes in movement characteristics.

• It must be computationally inexpensive and robust to instrumentation noise.

Many of the previously used measures of motion smoothness in the field, do not

satisfy these requirements and so are not useful for analyzing motion smoothness

[1]. Balasubramanian et al. test a variety of smoothness measures and find that the

Dimensionless Jerk (DLJ) and Log Dimensionless Jerk (LDLJ) are the only valid jerk-

based measures of movement smoothness [2]. They modify the smoothness measure

from their previous work [1] to make it valid as well, using inspiration from Beck et al.

[3]. Thus there are two smoothness measurements that we will describe in detail in

this section as they pertain the most to this thesis. They are the Log Dimensionless

Jerk (LDLJ) and the Spectral Arc Length (SAL).

2.4.1 Log Dimensionless Jerk

The Dimensionless Jerk (DLJ) and the Log Dimensionless Jerk (LDLJ) are the only

valid jerk based measures of movement smoothness [2]. The LDLJ and DLJ are

defined as:

DLJ , −(t2 − t1)5

v2peak

∫ t2

t1

|d
2v(t)

dt2
|2dt (2.22)
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LDLJ , −ln(
(t2 − t1)5

v2peak

∫ t2

t1

|d
2v(t)

dt2
|2dt) (2.23)

where t is time, vpeak is the peak velocity between times t1 and t2, and v(t) is the

velocity at time t.

The LDLJ was developed as a way to mitigate some of the “ceiling effect” described

by Balasubramanian et al. [1]. This metric is less robust at dealing with measurement

noise as it is unable to differentiate between noise or signal [2].

2.4.2 Spectral Arc Length

This novel method for quantifying smoothness was pitched with the idea that we can

picture smooth movements as being composed of low-frequency components and non-

smooth movements as being composed of higher-frequency components. Balasubra-

manian et al. claim that instead of analyzing the frequency spectrum for quantifying

smoothness, one can look at the complexity of the shape of the Fourier magnitude

spectrum [1]. To measure the complexity of a curves’ shape, they use the arc length

(defined as the length along a curve). Using this basis, they define the Spectral Arc

Length (SAL) as the “negative arc length of the amplitude and frequency-normalized

Fourier magnitude spectrum of the speed profile with some frequency thresholds and

amplitude thresholds” [1, 2] (see equation (2.24)).

ηsal ,
∫ ωc

0

√
(

1

ωc
)2 + (

dV̂ (ω)

dω
)2dω (2.24)

V̂ (ω) ,
V (ω)

V (0)
(2.25)
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where ω is the frequency, ωc is the frequency threshold, V (ω) is the amplitude of

the movement profile at frequency ω, and V̂ (ω) is the normalized amplitude of the

movement profile at frequency ω.

The SAL has been used in bio-kinematics as well as in assessing surgical skills with

regards to smoothness [20]. Jantscher uses SAL as a real-time metric for assessing

surgical performance and show that a sliding window of five seconds provided good

feedback to the subjects of the trials [20]. The SAL is a promising measure as it is

valid and particularly stable [1, 2]. The appropriate threshold values must be chosen.

Otherwise, it is possible to get measures that do not appropriately relate to motion

smoothness.

2.5 Summary

In this chapter, we have gone through the majority of the background information

required to understand CNNs, single image object detection systems, video object

tracking by detection, motion smoothness and a variety of metrics and terms im-

portant for the field. Although the field of video-based object detection has been

advancing in terms of matching ground truth, no work has been done on analyzing

motion path smoothness. We explore the usage of biokinematics based smoothness

measurements for object motion path smoothness analysis in Chapter 3 and evaluate

the adaptations made to these mathematical models for usage in computer vision.
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Chapter 3

Measuring Smoothness in Video Object Detection

3.1 Introduction

The performance of object detection using neural networks is often evaluated using the

Mean Average Precision (mAP) after Intersection over Union (IOU) thresholding [42].

The mAP metric is useful for comparing the ground truth boxes and predicted boxes.

However, when applied to video, it does not provide any additional information about

its temporal quality. In video, more information than just bounding box position and

class is present and the quality of predictions can differ in a multitude of different

ways. In particular, many object tracking by detection systems have run into the

problem of bounding box path smoothness problems [31, 34, 35]. There is currently

no agreed-upon metric to quantify motion smoothness or jerkiness of bounding box

paths for tracking and detection systems. We propose two smoothness metrics for

use with object tracking by detection scenarios.

To quantify object smoothness, we go to the field of biokinematics for inspiration.

Since, smooth coordinated movements are often good characteristics for healthy hu-

man motor behaviour [1, 2], various smoothness metrics have been developed in the
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field of biokinematics to assess sensory-motor performance in patients [1]. We chose

two valid, sensitive and practical metrics based on the findings of Balasubramanian et

al. [2], namely Log Dimensionless Jerk (LDLJ) and Spectral Arc Length (SAL). We

adapt these metrics for use in bounding box path scenarios and analyze the results

of these metrics on the Multi-Object Tracking (MOT) Dataset [32].

The main contributions of this chapter are as follows:

• We propose applying the IOU between the boxes on two consecutive frames as

a measure of speed of the bounding box path and transformation.

• We propose modifications to the LDLJ metric for usage with object detection

and evaluate it using two object detection deep convolutional neural networks

and ground truth.

• We propose modifications to the SAL metric for usage with object detection

and evaluate it using two object detection deep convolutional neural networks

and ground truth.

• We perform statistical tests on the results of applying both metrics to the

entire MOT dataset to demonstrate that there are significant differences in

the performance of YOLOv3 and Retinanet deep convolutional neural networks

and the ground truth.

The rest of this chapter is organized as follows. Section 3.2 gives an overview of

object detection networks and the two networks that we use in the experimentation.

Section 3.3 is a reminder of motion smoothness metrics and how we define bounding

box motion characteristics and explains the adaptations made to the metrics, the

methods, and experiments that were performed to validate the adaptations. The
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results of the experimentation and testing of the metrics are reported in Section 3.4.

We summarize the results of these experiments in Section 3.5.

3.2 Object Detection Networks

You Only Look Once is a state-of-the-art, real-time object detection system for

use on standard object detection tasks [39]. YOLO is a single-frame, one-stage object

detection system that prefers an accurate detector that is still fast and uses a 53

layer feature extractor known as Darknet-53 [38, 39]. The YOLO version used in this

thesis is YOLOv3 which contains nine possible anchor boxes organized in groups of

3 [40]. Each of the groups corresponds to a different retinal scale, allowing a large

variety of predictions in terms of bounding box scales [40]. This means that the final

prediction tensor for YOLOv3 is of shape [N,N, (3 ∗ (4 + 1 + num classes))] where

N is the number of grids the input image is divided by for each retinal scale. Note

that N changes based on the retinal scale stride and the input image. In Redmon &

Farhadi’s work, they use strides of 8, 16 and 32, which leads to a possible N of 64, 32

and 16 respectively. The predicted boxes are then extracted from these tensors using

equations (2.7)-(2.10) from chapter 2, and non-max suppression is used to get rid of

duplicate boxes. This network is chosen as it is state-of-the-art in terms of speed

of inference in object detection, making it a common choice for video-based object

detectors. The architecture for YOLOv3 can be seen in Fig. 3.1.
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Figure 3.1: The YOLOv3 architecture in detail. Note that the dimensions of S1, S2
and S3 are based off the retinal strides and the shape of the input image.

Retinanet is a state-of-the-art, one-stage object detector that shares many similar-

ities with previous dense, two-stage object detectors such as Region-Proposal Network

and Fast-RCNN [28]. Retinanet focuses on using a feature pyramid network backbone

and a novel focal loss to deal with class imbalance in object detection datasets [28].

The feature pyramid backbone constructs efficient multi-scale features from a single

resolution image [28]. Retinanet uses 9 anchor boxes, grouped into 3 different retinal

scales. This is comparable to the retinal scales and anchor boxes that YOLOv3 uses.

We focus on Retinanet with Resnet-50 (a 50 layer version of Resnet) as the feature

extractor. The architecture for Retinanet can be seen in Fig. 3.2.
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Figure 3.2: The Retinanet architecture in detail. Note that the dimensions of the
outputs are based off the retinal strides and the shape of the input image.

3.2.1 Object Detection and Tracking Metrics

Object detection accuracy metric. The most commonly used evaluation metric

in object detection is the Intersection over Union (IOU) metric [42]. This metric is a

useful way to determine true positives and false positives when comparing predictions

against ground truths and is a part of the process in determining mAP [29, 42]. The

metric is often used to match predicted boxes with ground truth boxes based on

IOU and threshold boxes which are not close to any ground truth. A Generalized

Intersection over Union (GIOU) metric has been developed by Rezatofighi et al. in

order to use an overlap metric as a regression loss [42]. This is particularly useful

when bounding boxes are not overlapping in any way. This thesis will focus on the

IOU metric.
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Multi object tracking metrics. The Multi-Object Tracking Accuracy (MOTA)

is the most widely used metric to evaluate the performance of an object tracking

system [32]. MOTA is one of the many metrics used in the Multi-Object Tracking

(MOT) dataset challenge, although they indicate that it may not serve as a single

performance measure [32]. The MOTA was initially introduced by Stiefelhagen et al.

[48] and is defined as:

MOTA = 1−
∑

t(FNt + FPt + IDSWt)∑
tGTt

(3.1)

where t is the frame index, GT is the number of ground truth objects, FN is the

number of false negatives, FP is the number of false positives, and IDSW is the

number of mismatched errors. The IDSW can be calculated by counting the number

of times an object path switches identity based on ground truth.

Additionally, Multiple Object Tracking Precision (MOTP) is commonly used in

tracking challenges. The MOTP denotes the average dissimilarity between true pos-

itives and the corresponding ground truth [32]. For bounding boxes, it is defined

as:

MOTP =

∑
t,i dt,i∑
t ct

(3.2)

where ct is the number of matches in frame t, dt,i is the distance between the

matched bounding box i with its assigned ground truth object.

Finally, in most object tracking scenarios, the only measure of a trajectory quality

is known as the track quality [32]. Track quality is classified as either mostly tracked,

partially tracked or mostly lost. This is done based on a percentage measure of
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successful object tracking [32].

3.3 Motion Smoothness

3.3.1 Bounding Box Speed Profiles

To measure bounding box smoothness over time, a speed profile using the proposed

bounding boxes must be defined. We need a single metric that encompasses the

smoothness of a box in terms of bounding box position (x and y) and bounding

box scale change (w and h). Since IOU encodes the shape properties of the objects

compared to a region and gives a normalized measure of their area [42], we can use

the (1-IOU) between bounding boxes at times t and t+ 1 to encode the speed profile

of a box at time t. Therefore, we formulate the speed profiles as a temporal IOU

between two consecutive frames with the following equation:

vIOU(t) = 1− IOU

vIOU(t) = 1− |At ∩ At+1|
|At ∪ At+1|

(3.3)

vGIOU(t) = 1−GIOU

vGIOU(t) = 1−
(
IOU − |Ct \ (At ∪ At+1)|

|Ct|

) (3.4)

where vIOU(t) is the IOU speed at time t, vGIOU(t) is the GIOU speed at time t,

At is the bounding box at time t and Ct is the smallest enclosing convex box for At

and At+1.

If an object A is stationary and does not move between time t and t + 1, we
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note that vIOU(t) = 0 and vGIOU(t) = 0. The maximal values for these metrics are

based on the smallest possible overlap. These maximal values are vIOU(t) = 1 and

vGIOU(t) = 2, this is because the IOU is bounded below by 0 and the GIOU allows

for negative values up to -1 (where a value between 0 and -1 represents how far away

the bounding boxes are from one another) [42]. Since it is unlikely for a bounding

box to move beyond itself within one frame at 24fps, in this thesis we will focus on

the IOU formulation only. We demonstrate the effectiveness of using the temporal

IOU as a measure of smoothness in Subsection 3.4.2 by plotting the temporal IOU of

an object path and its smoothed variants. Fig. 3.3 illustrates three examples of the

temporal IOU at times t− 1 and time t.

Figure 3.3: Example of the bounding box of an object at time t−1 and time t as well
as their respective temporal IOU.

3.3.2 Smoothness Metrics

Balasubramanian et al. define motion smoothness as “a quality related to the con-

tinuality or non-intermittency of a movement, independent of its magnitude and

duration”[2]. A smoothness measure is a metric that can be given a movement profile

and should provide a valid, sensitive, reliable and practical measure [2]. In this thesis,

we only focus on the Log Dimensionless Jerk (LDLJ) and the Spectral Arc Length
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(SAL) as they are the only existing smoothness measures in biokinematic motor con-

trol literature that are sensitive, valid and practical [2]. It should be noted, however,

that only SAL is reliable against measurement noise [2].

Log Dimensionless Jerk.

One of the older, most frequently used smoothness measures that is valid, sensitive

and practical is the Log Dimensionless Jerk (LDLJ) [2]. The LDLJ is defined as

below:

DLJ = −(t2 − t1)5

v2peak

∫ t2

t1

|d
2v(t)

dt2
|2dt (3.5)

LDLJ = −ln|DLJ | (3.6)

where t1 is the start time, t2 is the end time, vpeak is the peak velocity and v(t) is the

velocity at time t. The LDLJ is often used to quantify smoothness and coordination

in biokinematics tasks to analyze sensorimotor differences in stroke patients [1, 2].

However, Balasubramanian et al. have found the LDLJ to be relatively non-robust

to sensor noise [2].

Adapted Log Dimensionless Jerk

To use the IOU as a speed profile in LDLJ, some modifications are required. First, a

non-moving object would have a vIOU(t) = 0, which could lead the DLJ term in the

ln of equation (3.6) to be zero. To fix this, we modify the LDLJ as follows:

ALDLJ = −ln|1 +DLJ | (3.7)
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This allows for DLJ = 0 and it does not greatly affect the LDLJ calculation. We

name this adaptation as the ALDLJ. It should be noted that when comparing two

objects, the object with the higher ALDLJ is smoother. As an additional modifica-

tion, we note that vpeak cannot be set per trial and must be set for all trials. Since

we are using the temporal IOU as a measure of speed, there is a theoretical peak of

1 and so we set vpeak = 1.0. Finally, we need to find an appropriate window length

N , to perform the ALDLJ calculation. Although the entire scene may be used, using

a rolling window for the ALDLJ calculation allows for an online measure of network

performance in terms of bounding box prediction smoothness. This will be illustrated

in Subsection 3.4.3.

Spectral Arc Length.

Spectral Arc Length (SAL) is a novel smoothness metric that is more reliable and

robust than the other previously used smoothness metrics [2]. The intuition behind

this metric is that movements can be thought of as being composed of numerous

interfering low-frequency components and high-frequency components [1]. This means

that if we analyze the complexity of the shape of the speed profiles’ Fourier Magnitude

spectrum, we will be able to quantify smoothness. Balasubramanian et al. define the

SAL as the negative arc length (length along a curve) of the magnitude and frequency-

normalized Fourier Magnitude of the speed profile [1, 2]. The SAL has been used in

biokinematics as well as in assessing surgical skills with regards to the surgeons’

smoothness [20]. The SAL is defined as below:
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ηsal , −
∫ ωc

0

√
(

1

ωc
)2 + (

dV̂ (ω)

dω
)2dω (3.8)

V̂ (ω) ,
V (ω)

V (0)
(3.9)

where ωc is the frequency threshold, ω is the frequency, V̂ (ω) is the normalized

magnitude of the speed profile at frequency ω, V (ω) is the magnitude of the speed

profile at frequency ω, and thus V (0) is the magnitude of the speed profile at frequency

0.

Note that SAL requires two hyper-parameters: a frequency threshold and a mag-

nitude threshold. Balasubramanian et al. use a frequency threshold of ωc = 40πrad/s

and a magnitude threshold of 0.05 [1]. These values were tuned for patient trials in

biokinematics and so may not work well for our purposes. A magnitude threshold of

0.05 only allowed for 1 frequency bin in our use case, which would make the spectral

analysis useless as we require a curve from which we could extract arc length. We

devise an experiment to find better values and present its results in Section 3.4.4.

3.3.3 Adapted Spectral Arc Length

To use the SAL with temporal IOU as speed profiles, we must be able to take the

discrete Fourier transform of vIOU(t) profiles. We employ a sliding Discrete Fourier

Transform (DFT) [19] to allow for an online calculation of the metric. The sliding

DFT requires a minimum of N samples (where N is the window length) before the

DFT is valid [19], so we do not calculate the Spectral Arc Length for the first N

samples. The sliding discrete Fourier transform has a few nice properties. It requires

a constant number of operations to compute a successive DFT [19] and it only requires
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Figure 3.4: Example Spectral Arc after frequency thresholding and after magnitude
thresholding. Note that the first threshold reached is the one used.

two real adds and one complex multiply new sample [19]. We refer to this adapted

Spectral Arc Length as the ASAL.

We note that if we are to compare two objects, the object with the higher ASAL

is smoother. Additionally, we do not normalize per trial, as this leads to an inability

to compare intertrial results. To resolve this issue, we do not normalize by V (0)

in equation (3.9). Finally, as we are adopting the ASAL from another field, we

perform some tests on the frequency and magnitude thresholds to find appropriate

parameters by analyzing the effect the parameters have on the final ASAL. This is

done in Subsection 3.4.4.
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3.4 Evaluation of Smoothness Metrics

3.4.1 Data

To evaluate and analyze the ALDLJ and ASAL, we chose to use the Multi-Object

Tracking (MOT) Dataset as it contains a variety of scenes with a large variety of

object paths that are clearly labelled [32]. To map network detections with object

paths, we use the IOU metric to find the closest match for each ground truth along the

path and assign the predictions accordingly. This method of assigning ground truths

to predictions is how networks train on object detection internally [28, 38, 39, 40].

Finally, as all evaluations are on a sliding window, we use a stride of 4 frames as this

was empirically determined to be the minimum number of frames required for the

jerk to be calculated.

In Subsection 3.4.2 we show that the temporal IOU (i.e. vIOU(t)) is a suitable

speed profile for a bounding box. In Subsection 3.4.3, we find the appropriate window

length for LDLJ and SAL on bounding box smoothness calculations using a single

object path to evaluate the hyperparameters. In Subsection 3.4.4, we find the best

magnitude and frequency thresholds that allow the most information to be collected

for calculating the SAL. In Subsection 3.4.5, we examine the intuition that the ground

truth path is the smoothest. Finally, in Subsection 3.4.6, we analyze the performance

of YOLOv3, Retinanet and ground truth object paths using the ALDLJ and ASAL.

3.4.2 Validating IOU-based Speed Profile

Smoothness measures require a speed signal from which we can measure the smooth-

ness of an object path. We propose using a temporal IOU to define this singular speed

signal as explained in Section 3.3.1 and demonstrate its effectiveness by formulating
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an experiment using the object path predicted by YOLOv3 on MOT1709 matched

against the ground truth of object with ID = 1. To validate the effectiveness of

the temporal IOU, we generate 3 other object paths using different length moving

averages. As a reminder, the moving average is a windowed average of the signal in

a way that acts as a type of impulse filter.

We define a short, medium and long moving average as having window lengths of

8, 16 or 32 frames respectively. We define the moving average in equation (3.10). The

x and y values of the centre point of the predicted bounding box of all of these paths

are plotted in Fig. 3.5a and Fig. 3.5b respectively. We plot the temporal IOU of the

bounding box paths in Fig.3.6a, and the IOU of the predicted bounding box paths

against the ground truth are plotted in Fig. 3.6b. It is clear from these figures that the

moving average of a path does smoothen the temporal IOU (vIOU(t)). Additionally,

from Fig. 3.6b, we see that the moving average of an object bounding box path can

maintain or improve on the IOU against the ground truth. This demonstrates that

sometimes, simply smoothing the path of an object can result in an object path that

is closer to the ground truth.

MAw =
B1 +B2 +B3 + ...+Bw

w
(3.10)

where MAw is the moving average with window length w, Bi is the bounding box

at timestep i, and w is the window length.
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(a) (b)

Figure 3.5: Plot of YOLOv3’s predicted box center coordinate x (left) and y (right)
value, and their mobile average in Scene MOT1709 for object ID 1 over
time.

(a) (b)

Figure 3.6: Plots of result of the experiments with moving average on the effect of
vIOU(t) (left) over timestep in frames. Plot of the result of the experiments
with moving average on the IOU against ground truth bounding boxes
(right) over timestep in frames.
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3.4.3 Determining Window Length

To effectively use the LDLJ and SAL, we need to determine a suitable time window N

that will encompass enough information about object paths. It should be noted that

larger window lengths allow for more information of an object’s motion characteristics

and in both the case of SAL and LDLJ, To do this, we plot the LDLJ and SAL at

the following range of window lengths in terms of frames: {8, 16, 32, 64, 96, 128}.

The plots for these experiments can be seen in Figs. A.1-A.2 in appendix A. We

note that the decrease in smoothness of the last few collected points in the figures

is due to ground truth moving in and out of frame. Based on these experiments we

note that LDLJ is more sensitive to the window size than SAL. To choose a window

size, we must balance local information with global information. A small window

has much local information, but not enough global information about the movement

profile of the bounding box. Similarly, a large window can often flatten out the local

information in favour of global information. Considering this balance, the window

length we choose is 64 frames as this window allows for the ground truth to have

changes in smoothness (allowing intratrial comparisons). We plot the graph of the

moving LDLJ and SAL with a window of 64 frames on object path ID 1 in MOT1709

in Figs. 3.7a-3.7b. The mean LDLJ and SAL values are shown in Tables 3.1-3.2.
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(a) (b)

Figure 3.7: Plots for a window size of 64 on MOT17-02 object path 1 (Note higher is
smoother). Results are shown for ground truth, YOLOv3 and Retinanet
as a running plot.

Table 3.1: Mean LDLJ values at a variety of window lengths (higher is smoother) for
MOT17-02 object path 1

Mean Log Dimensionless Jerk

Window

Length

8 Frames 16

Frames

32

Frames

64

Frames

96

Frames

128

Frames

Ground

Truth

−1.63e−6 −2.20e−4 −1.83e−2 −4.85e−1 -1.82 -3.35

YOLO −5.86e−5 −6.88e−3 −4.20e−1 -3.46 -6.01 -7.92

Retinanet −6.07e−5 −7.16e−3 −4.44e−1 -3.54 -6.10 -7.98
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Table 3.2: Mean SAL values at a variety of window lengths (higher is smoother) for
MOT17-02 object path 1

Mean Spectral Arc Length

Window

Length

8 Frames 16

Frames

32

Frames

64

Frames

96

Frames

128

Frames

Ground

Truth

-1.28 -2.20 -5.97 -13.19 -20.04 -27.28

YOLO -2.08 -8.88 -28.86 -78.41 -151.01 -246.27

Retinanet -2.93 -8.95 -26.88 -74.10 -139.63 -215.67

3.4.4 Determining Magnitude and Frequency Thresholds

SAL as defined in equations (3.8)-(3.9) requires two thresholding parameters [1]. Fig.

3.4 is an example of the SAL of a movement profile. These thresholds are useful

in making SAL robust to noise [2]. We note, however, that the original parameters

provided by Balasubramanian et al. [1] were not suitable for the object bounding box

paths as they were initially found for patient sensory-motor trials.

We do an exhaustive grid search on frequency threshold and magnitude threshold

at a variety of ranges. Balasubramanian et al. [1] use 5 as their frequency threshold

which corresponds to their sampling frequency of 100Hz, we began with this value

and incremented it by 5 up until 35 as our corresponding sampling frequency is 24Hz.

Any frequency bin beyond the frequency threshold tested is ignored to calculate SAL.

For the magnitude threshold, we begin with an exceptionally small value of 1e−5 and

in log scale, we increase this threshold until we reach 1e−1 . We begin with this small

value to allow more information into the SAL calculation and try to find the effect
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Table 3.3: Spectral Arc Length Threshold Experimentation on MOT17-02 object
path 1 (higher is smoother) of the Ground Truth path. This is used to
view the effect of parameters on the Spectral Arc Length in order to choose
suitable parameters.

Magnitude Threshold

Frequency Threshold

1e−5 1e−4 1e−3 1e−2 1e−1

5 -7.72 -7.72 -7.72 -7.72 -7.21
10 -8.67 -8.67 -8.67 -8.65 -8.59
15 -9.59 -9.59 -9.59 -9.56 -8.59
20 -10.60 -10.60 -10.60 -10.56 -9.22
25 -13.19 -13.19 -13.19 -13.13 -11.55
30 -13.19 -13.19 -13.19 -13.13 -11.55
35 -13.19 -13.19 -13.19 -13.13 -11.55

that increasing this threshold may have. Once the spectral arc reaches either the

frequency threshold or the magnitude threshold, all other frequency bins are ignored.

The results of our experimentation are presented in Table 3.3 and a few insights

are readily apparent. Firstly, we note that changes in the magnitude threshold are

minimal. We choose a magnitude threshold of 1e− 5 as a lower magnitude threshold

is preferable in allowing more information to be included in the SAL calculation.

Finally, the frequency threshold has a scaling effect on the Spectral Arc Length up

until a threshold of 25. Frequency thresholds beyond 25 frequency bins do not affect

the SAL calculation. Due to these findings, we choose to use a frequency threshold of

25 and a magnitude threshold of 1e−5 for object path analysis. The plot for this set

of hyperparameters is presented in Fig. 3.8 and the remaining set of hyperparameters

can be found in appendix B, Figs. B.1-B.4. These experiments show that a frequency

threshold of 25 and a magnitude threshold of 1e−5 are useful for bounding box path

smoothness evaluation.



3.4. EVALUATION OF SMOOTHNESS METRICS 52

Figure 3.8: SAL plot for frequency threshold 25 and magnitude threshold 1e−5 of
MOT17-02 object path 1.(Note higher is smoother)

3.4.5 Ground Truth Smoothness Analysis

It may seem intuitive to believe that ground truth is the smoothest path, however,

we develop an experiment using the moving averages from Subsection 3.4.2 and the

ground truth of that very same object path. We plot the LDLJ and the SAL of those

object paths using the hyperparameters chosen after experiments from Subsections

3.4.3-3.4.4 in Fig. 3.9. This analysis of the moving average paths and the ground truth

show that the ground truth is not the smoothest path and simply matching ground

truth does not necessarily lead to a smooth bounding box motion characteristic.

Figure 3.9: Left is the LDLJ plot of the YOLOv3 predicted path, moving average of
the YOLOv3 predicted path and, the ground truth. Right is the SAL plot
of the YOLO predicted path, moving average of the YOLOv3 predicted
path, and the ground truth. GT is the ground truth.
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3.4.6 Validating LDLJ and SAL using YOLO and Retinanet

Previous subsection experiments have been on object path 1 in MOT17-09, to make

sure there is no bias in our experimentation of the LDLJ and the SAL, we report the

LDLJ and SAL mean on all object ID’s in all scenes in the Multi-Objective Tracking

Dataset. We plot the box plot of the LDLJ and SAL values on all object IDs in all

scenes in MOT in Figs. C.1-C.2 of appendix C. The histogram plots of the LDLJ

and SAL means are all shown in appendix C Figs. C.3-C.4.

If these metrics are indicative of object path smoothness, we would expect that

the ground truth would be the smoothest. In our experimentation in Subsection 3.4.6

with these metrics, this expectation holds (see table 3.4). Although LDLJ is known to

be unreliable when affected by sensor noise [2], the object detection scenario has very

little such noise. In Table 3.4 we see that the LDLJ claims Retinanet as being worse

than YOLO for motion smoothness, and the SAL confirms this. Retinanet has many

more object proposals than YOLO [28, 40] and thus may have more high-frequency

noise in object paths for the long term and this may explain the reason for it’s lower

smoothness metrics.

Table 3.4: Mean LDLJ and mean SAL values for all networks as well as Ground
Truth on all objects that are present in the ground truth, and predicted
by YOLOv3 and Retinanet in all scenes of the Multi-Object Tracking
Dataset. Note that for both LDLJ and SAL, higher is smoother.

Metrics LDLJ SAL

Ground Truth −0.209± 0.18 −50.819± 15.33

YOLO −0.652± 0.64 −57.848± 12.04

Retinanet −0.742± 0.74 −65.687± 10.96
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To show that the LDLJ and the SAL properly differentiate between the ground

truth, YOLOv3, and Retinanet, we perform two one-way ANOVA tests on the mean

SAL and the mean LDLJ of all object IDs that are present in the ground truth

and predicted by YOLOv3 and Retinanet from the Multi-Object Tracking Dataset.

To maintain comparability, if any object was not predicted by either YOLOv3 or

Retinanet, it is not included in the one-way ANOVA tests. The results of these

ANOVA tests can be seen in Table 3.5. With p < 0.0001 for both SAL and LDLJ, we

decided to conduct a multi-comparison post-hoc test to determine which population

means are significantly different from the others. As the population means were

found to be normally distributed with a D’Agostino’s K-squared Test, we conducted

a Tukey’s Honest Significant Difference (HSD) Test with α = 0.05. The results of this

test on the LDLJ mean can be seen in Table 3.6 and the results on the SAL means

can be seen in Table 3.7. As the null hypothesis for the Tukey’s HSD test is that all

population means are the same, we note that both LDLJ and SAL can differentiate

all population means. This supports that both the LDLJ and SAL can be used as

reliable ways to determine the smoothness of object paths generated.

Table 3.5: Results of one-way ANOVA test on the mean SAL and mean LDLJ of all
objects in the ground truth, and predicted by YOLOv3 and Retinanet in
all scenes of the MOT Dataset.

Metric F value P <

SAL IOU 910.69 0.0001

LDLJ IOU 641.14 0.0001
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Table 3.6: Multiple Comparison of LDLJ Means using Tukey HSD with α of 0.05.
Reminder that H0 is that all population means are the same.

Group 1 Group 2 Mean Diff p adjusted lower upper Reject H0

Ground Truth Retinanet -0.53 0.001 -0.57 -0.50 True

Ground Truth YOLOv3 -0.44 0.001 -0.48 -0.41 True

Retinanet YOLOv3 -0.09 0.001 -0.05 0.13 True

Table 3.7: Multiple Comparison of SAL Means using Tukey HSD with α of 0.05.
Reminder that H0 is that all population means are the same.

Group 1 Group 2 Mean Diff p adjusted lower upper Reject H0

Ground Truth Retinanet -14.87 0.001 -15.68 -14.05 True

Ground Truth YOLOv3 -7.03 0.001 -7.84 -6.21 True

Retinanet YOLOv3 7.84 0.001 7.02 8.66 True

3.5 Summary

In this section, to quantify bounding box path smoothness, we adapt two smoothness

metrics from the field of biokinematics for use in object bounding box path analysis

in object tracking by detection challenges. We show the process by which we adapt

the smoothness metrics for bounding box path analysis and show that these metrics

can quantify object path smoothness. Finally, we compare and analyze the results of

using these metrics on a particular object in a particular scene in the Multi-Object

Tracking dataset. As these metrics can quantify path smoothness of a particular

object detection/tracking system, ALDLJ and ASAL are good for testing multi-object

tracking systems for smoothness.
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We provided implementation details for ALDLJ and ASAL on objects in video and

we analyzed the window size for both metrics and found the best hyperparameters

for SAL (Subsections 3.4.3-3.4.4).

In the next chapter, we investigate the differentiability of these metrics to use

them for regularization in object tracking by detection systems such as recurrent

video object detectors. This enables a system that not only detects objects but at-

tempts to predict smooth object paths. Experimental results have found that animals

have better object recognition with smoother input [53]. This suggests that learning

from temporal input, instead of static frames can improve object recognition in these

systems. Similarly, biasing the production of smooth predictions through smoothness

regularization may improve the learning of object detection systems.
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Chapter 4

Regularization with Smoothness Metrics for

Improved Video Object Detection and Tracking

4.1 Introduction

In Chapter 3, we discuss a variety of motion smoothness metrics used in the field of

biokinematics and adapt them for computer vision bounding box path usage. These

adapted metrics are called Adapted Log Dimensionless Jerk (ALDLJ) and Adapted

Spectral Arc Length (ASAL). As they have demonstrated their efficacy in quantifying

motion smoothness amongst object bounding box proposal methods, we know that

these metrics are useful in characterizing bounding box path smoothness.

Having the ability to separate population means based on motion smoothness

metric calculations leads to the following important questions:

• Can ALDLJ and ASAL be adapted for use as loss functions?

• Can Video Object Detectors be made smoother through regularization of their

outputs using these smoothness losses?

• What is the effect of regularization loss on the performance of a Video Object
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Detector’s Mean Average Precision?

First we need to convert the metrics from Chapter 3 into losses in Section 4.2. We

detail the model used in this chapter in Section 4.3. Then we devise the methodology

of the experiments in Section 4.4. Results of the methodology are provided in Section

4.5. A discussion of these results is presented in Section 4.6, and we summarize our

findings in Section 4.7.

4.2 Converting Metrics to Loss

4.2.1 LDLJ Loss

Since the ALDLJ monotonically decreases as smoothness decreases, we modify the

LDLJ to become a loss by formulating it as shown in the following equations:

`DLJ =
(t2 − t1)5

v2peak

t2∑
t=t1

(
d2v(t)

dt2
)2dt (4.1)

`ALDLJ = ln(1 + `DLJ) (4.2)

where t1 is the start time, t2 is the end time, vpeak is the peak velocity and v(t) is

the velocity at time t. Note that as stated in Chapter 3, vpeak is kept constant and

is set to the maximal possible IOU of 1. The change between `ALDLJ and ALDLJ

is that the `ALDLJ is monotonically increasing because it has its sign flipped. An

interesting property of using `ALDLJ as a loss is that the loss can easily be minimized

by simply predicting either no object or by predicting non-moving objects. This is

important because it may negatively impact object detection.
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4.2.2 ASAL Loss

As the ASAL monotonically decreases as smoothness decreases, we modify the ASAL

to become a loss by formulating it as follows:

`ηASAL
,

ωc∑
ω=0

√
(

1

ωc
)2 + (

dV (ω)

dω
)2dω (4.3)

where ωc is the frequency threshold, ω is the frequency, and V (ω) is the magnitude

of the speed profile at frequency ω. The main difference between the `ηASAL
and the

ASAL is that the `ηASAL
is monotonically increasing because it has its sign flipped

to make it the positive arc length of the Fourier of the speed profile. As noted in

Chapter 3, we do not use the normalized Fourier spectrum for the ASAL calculation

in order to maintain intertrial comparisons.

In calculating the ASAL, we use a sliding discrete Fourier transform as described

in Chapter 3 Section 3.3. As the sliding discrete Fourier transform only needs two real

additions and one complex multiply [19]. With N frames in a window, we require 2N

real additions and N complex multiplications. This gradient can be approximated

using automatic differentiation techniques.

4.3 Models

This experiment begins with a trained single image YOLOv3 network on the Multi-

Object Tracking dataset. For all experiments, no training data is ever used to evaluate

or test any network. This pretrained network performs single image object detection

and has no temporal signal by which a temporal gradient could propagate. Since the

smoothness regularization requires multiple consecutive frames, the gradient which it
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will propagate may be temporal. For example, it is possible for an object detected in

frame 3 to affect the smoothness of the path of this object in frame 4. From Chapter 3

Sections 3.4.2-3.4.5, we know that local smoothness can be applied by using a moving

average and that this can positively affect mAP. For this experiment, we propose

using the Long Short Term Memory unit so that the network can learn long or short

term weights to improve smoothness. To maintain spatial consistency and to ensure

effective memory usage, these Long Short Term Memory units are embedded as part

of the kernel for 2D convolutions.

Figure 4.1: The architectural drawing of the window segment of the YOLOW net-
work. Note that we split the probabilities and the coordinates from the
final tensor output of YOLOv3.

To simplify this network, we only use one extra layer at the end of the original fully

trained single image YOLOv3 network and we only operate on the part of the tensor

which corresponds to the coordinates of bounding boxes (see Fig. 4.1), we refer to

this network as You Only Look Once Windowed (YOLOW). We use a Convolutional

2D Long Short Term Memory (LSTM) layer as in the works of Shi et al. with a [1, 1]

kernel [45]. The principle being that these weights can be used to learn a kernel which
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will optimize for both bounding box proposals and for bounding box path smoothness.

Note that since there are three retinal outputs for YOLOv3, this Convolutional 2D

Long Short Term Memory layer is added to all three retinal outputs and weights are

not shared between retinal outputs. The weights in the Convolutional 2D LSTM layer

are initialized randomly and no activation function is used. The network architecture

for YOLOW is shown in Fig. 4.2.

Figure 4.2: The network architecture for You Only Look Once Windowed. Note
s1, s2, s3 are the three retinal scales. Their dimensions are based off
the retinal strides and the input image size. They are separated by
whether they represent the coordinates (coords) or the probability (probs)
of classes.



4.4. METHODOLOGY 62

4.4 Methodology

Training is done using the Multi-Object Tracking dataset and all weights except for

the Convolutional 2D LSTM layer are frozen. This means that the gradient will only

modify the newly added layers. An example input for YOLOW can be seen in Fig.

4.3. YOLOv3 and other object detection networks require image augmentation for

their inputs and YOLOW is no exception. The same augmentation strategies as those

used in Redmon et al. [40] for YOLOv3 are used with the only modification being

that the same augmentation is done for all images in a window. Using the same

optimizer and learning rate from Redmon et al. for YOLOv3 [40], we train YOLOW

in 7 different ways.

Figure 4.3: Example input for a training sample window.

These seven training regimens are used in this experiment to evaluate the effect

that either `ALDLJ or `ASAL has on YOLOW. Training regimens using ALDLJ use the

loss from equation (4.4) and training regimens using ASAL use the loss from equation

(4.5).
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`Y OLOW = α

s3∑
s=s1

`syolov3 + β`sALDLJ (4.4)

where `Y OLOW is the YOLOW loss, s is the retinal scale, s1 is the smallest retinal

scale, s3 is the largest retinal scale, `syolov3 is the YOLOv3 loss at retinal scale s,

`sALDLJ is the ALDLJ regularization loss at retinal scale s, α is the learning rate and

β is the relative learning rate for the smoothness loss.

`Y OLOW = α

s3∑
s=s1

`syolov3 + β`sηASAL
(4.5)

where `Y OLOW is the YOLOW loss, s is the retinal scale, s1 is the smallest retinal

scale, s3 is the largest retinal scale, `syolov3 is the YOLOv3 loss at retinal scale s, `sASAL

is the ASAL regularization loss at retinal scale s, α is the learning rate and β is the

relative learning rate for the smoothness loss.

The first training regimen does not use any smoothness regularization and is

considered as the baseline network. The second, third and fourth training regimens

use the loss from equation (4.4) with three different relative learning rate schedules.

We refer to networks trained with these regimens as ALDLJ YOLOW. The fifth, sixth

and seventh training regimens use the loss from equation (4.5) with the same three

relative learning rate schedules. We refer to networks trained with these regimens as

ASAL YOLOW.

The three relative learning rate schedules are used to evaluate the effect of the

regularization loss on the metrics that have been discussed in Chapter 3 and mAP.

The first relative learning rate schedule has a constant value of 1. The second relative

learning rate schedule has a linearly increasing value from 0 to 1. The third relative
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learning rate schedule has a linearly decreasing learning rate schedule from 1 to 0.

An ANOVA test and a Tukey Honestly Significant Difference (HSD) test is per-

formed on all the results for the ALDLJ metric, the ASAL metric and the mAP. This

is done to view the effect that `ALDLJ and `ηASAL
have on the ALDLJ, ASAL and

mAP metrics. As mAP is a single value, we divide the testing set into 10 sets of

images for which the networks are assessed on each set individually. These 10 mAP

values are used for the ANOVA and Tukey HSD tests.

4.5 Results

In this section, we present the results of the experiments described in Section 4.4.

The seven different networks are trained on the MOT dataset training and evaluated

using mAP, ALDLJ, and ASAL. Table 4.1 details the results of the mAP analysis

of the network on the test sets. The network training regimen which produced the

best mAP was the ASAL YOLOW with an increasing learning rate schedule. There

is some effect on the mAP using these training regimens, however, based on the

ANOVA tests of the mAP as shown in Table 4.2, we note that the increase in mAP

is not statistically significant as the P-value is > 0.05.

Table 4.1: The mAP of all three training regimens, with all three relative learning
rates, on the entirety of the test set. Reminder that β is the relative
learning rate.

YOLOW ALDLJ YOLOW ASAL YOLOW

β n/a 1.0 [0., 1.] [1., 0.] 1.0 [0., 1.] [1., 0.]

mAP 74.98 74.52 74.93 74.76 74.01 75.38 74.00
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Table 4.2: The results of the ANOVA test on the mAP values of all three training
regimens with all three relative learning rates on the test set.

mAP Analysis

F Value 0.0083

P Value 1.0000

Table 4.3: The LDLJ and SAL values of all three training regimens with all three
relative learning rates on the entirety of the test set (higher is better). β
is the relative learning rate.

Regimen β ALDLJ Metric

Value

ASAL Metric

Value

YOLOW n/a −0.767± 0.715 −33.571± 22.646

ALDLJ YOLOW

1.0 −0.768± 0.711 −33.632± 22.653

[0., 1.] −0.769± 0.712 −33.409± 22.676

[1., 0.] −0.761± 0.705 −33.236± 22.611

ASAL YOLOW

1.0 −0.767± 0.707 −33.680± 22.555

[0., 1.] −0.760± 0.703 −33.644± 22.649

[1., 0.] −0.762± 0.708 −33.501± 22.687

The results from the ALDLJ and ASAL metric analysis are presented in Table 4.3.

The ALDLJ metric analysis shows that the network trained with the ASAL increasing

regimen produced the best results. The ANOVA tests for both these metrics are shown

in Table 4.4 and in Table 4.5. Although it is frequent in the literature to look for

1% to 2% improvement, we decided to analyse our results using an ANOVA test to

determine statistical significance. The ANOVA tests did not show that these training
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regimens have a statistically significant effect on the ALDLJ and ASAL metrics as

their P-value is > 0.05.

Table 4.4: The results of the ANOVA test on the ALDLJ values of all three training
regimens with all three relative learning rates on the test set.

ALDLJ Analysis

F Value 0.0751

P Value 0.9984

Table 4.5: The results of the ANOVA test on the ASAL values of all three training
regimens with all three relative learning rates on the test set.

ASAL Analysis

F Value 0.1417

P Value 0.9906

4.6 Discussion

Although the results show a small impact on mAP, ALDLJ and ASAL using the

smoothness loss, these results were not statistically significant. We note that the best

mAP is achieved from an increasing relative learning rate schedule with an ASAL loss

regularization. Additionally, we note that regularizing with ASAL loss leads to best

results in ALDLJ metric, while regularizing with ALDLJ loss leads to best results

in ASAL metric. This pattern was not expected and may be due to a few factors.

Firstly, it is possible that since the ANOVA tests for the ALDLJ metric and the

ASAL metric show that this performance increase is not statistically significant, this

increase in performance could be training random chance. Alternatively, it could be
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that the effects of regularizing a network on smoothness affect the network in subtle

ways such that the relative learning rates used here are far too small.

Secondly, in attempting to make the network architecture simple, it introduces a

few limitations. For example, by using a kernel of [1, 1], the information that the con-

volutional 2D LSTM can use is limited to the specific tensor grid it is looking at. This

means that information from grids around the tensor grid we are convolving are not

used in determining future states. For example, if an objects path involves traversing

grids, it is impossible for information from those grids to be used in smoothing the

path. Additionally, this network architecture is very heavy in memory usage and

could only fit a window size of 12 frames. From Chapter 3, we know that a win-

dow length of around 64 frames would be better. Finally, no probability information

is being used in the convolutional 2D LSTM, meaning that patterns that hold for

certain classes, or information from previous object confidence scores are not being

used. It should be noted however, that memory requirements become a limiting fac-

tor when learning over sequences of video frames and when using recurrent neural

networks [13]. This is the main reason for the computational trade-offs made in these

experiments.

4.7 Summary

In this chapter, we used the metrics from Chapter 3 to define new loss functions which

are used to regularize recurrent object detection networks. We develop a methodology

for training, validating and testing a recurrent version of YOLOv3 we call YOLOW.

YOLOW is trained on three different training regimens at three different relative

learning rate schedules. This gives a total of 6 different trained networks with one
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additional baseline network which has not been regularized. Using the test set from

the Multi-Object Tracking dataset to analyze the 7 networks led to the finding that

although training YOLOW with ASAL as regularization and an increasing relative

learning rate led to the best mAP, these results were not statistically significant. Ad-

ditional analysis led to an interesting finding that regularizing with ALDLJ led to the

best ASAL and vice-versa. Again, these results were found not to be statistically sig-

nificant, however, they raise interesting questions about the loss landscape of `ALDLJ

and `ηASAL
. We discuss some of these questions in Section 4.6 and possible reasons for

the lack of statistical significance. In the future, work should be done on examining

a variety of possible network architectures to explore the type of information needed

for object smoothness to be optimized.
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Chapter 5

Conclusions and Future Work

5.1 Conclusion

In this work, we explore the concept of motion smoothness and evaluate its usage as

both a metric and a loss for bounding box proposal systems in neural network-based

object detection. We propose two motion smoothness metrics and evaluate them with

the Multi-Object Tracking (MOT) dataset.

We begin by conducting a literature study on neural networks, video object de-

tection and tracking systems, and motion smoothness in Chapter 2. We also discuss

the choice for motion smoothness equations that were used in this thesis and the

reasoning for it. The motion smoothness metrics chosen for this thesis are the Log

Dimensionless Jerk (LDLJ) and the Spectral Arc Length (SAL) from the field of

biokinematics as, to our knowledge, this is new concept and has not been explored or

applied to the paradigm of computer vision using deep learning networks.

We use two state-of-the-art object detection systems, YOLOv3 and Retinanet

(Resnet50 feature extractor) to evaluate our proposed motion smoothness metrics.

In Chapter 3, we adapt LDLJ and SAL and design specific experiments to determine



5.2. FUTURE WORK 70

the best hyperparameters for the motion smoothness metrics. Additionally, Chapter 3

presents the methodology and results of the evaluation of the metrics. The evaluation

shows that YOLOv3 and Retinanet do not score the same on ALDLJ and ASAL. This

leads to further evaluation of a simple way of increasing motion smoothness by using a

moving average. The experiments show that although ground truth is the smoothest

bounding box generation method, simply matching ground truth does not necessarily

increase smoothness.

In Chapter 4, we attempt to use our proposed metrics to design a smooth object

tracking network. We adapt the LDLJ and SAL as loss functions and describe the

network we use for the experiments and the baseline training regimen. Additionally,

we develop the methodology by which we test the effect that motion smoothness

regularization has on object detection systems. These experiments show that although

the motion smoothness regularization can lead to better mAP, LDLJ, and SAL, the

improvements are not statistically significant. We discuss possible reasons for this

and ways to increase the efficacy of the regularization losses in the experiments.

5.2 Future Work

There are a variety of different ways future work can proceed. More work can be

done on the analysis of the regularization loss and the effects it has on object detec-

tion networks. In particular, how does minimizing LDLJ affect SAL and vice-versa?

Finding this out can be done by using a variety of relative learning rates and ana-

lyzing the smoothness metrics at a few different points during training. Relating this

information with the regularization loss would allow insight into the specific effects

that the different smoothness metrics have on each other.
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5.2.1 Additional Testing

More testing should be done with object tracking systems that do not do object de-

tection in order to quantify these methods and their motion smoothness. Typical

kernel-based methods, and object tracking networks should be a part of this testing.

Perhaps training a subnetwork to perform object path smoothing while maintain-

ing mAP when objects pass in between grids on the output tensor would allow for

interesting dynamics between objects and the movement in the final tensor output.

Finally, although only one of the metrics is jerk-based, it would be interesting to see

if directly regularizing object speed would allow for smoother networks by increasing

the ”viscosity” of moving objects in the scene.

5.2.2 Loss Hyperparameter Searching

Possible future work should be done on finding the right relative learning rate schedule

for both `ALDLJ and `ηASAL by thoroughly testing a large number of parameters. The

learning rate schedules used may be a limiting factor for the network learning object

path smoothness.

5.2.3 Regulatization

Although YOLOW begins with a pretrained YOLOv3 network, it does not perform

as well as the single image version on its own. This is likely due to the network not

learning a good mapping as it receives the exact tensor that the single image YOLOv3

produces. In the future, this can be mitigated by optimistically initializing YOLOWs

LSTM convolutional 2D layer using an identity initialization. Alternatively, other

network structures should be examined. Perhaps using the same convolutional 2D
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LSTM but with a larger [3, 3] kernel. In particular because it is possible for objects

in a window to transition grids in a tensor, having information from the nearby grids

may aid the performance of the network. Additionally, perhaps having connections

between the retinal scales could be useful for this exact same reason. As objects come

closer to the camera they become larger and change retinal scales, making it possible

for information from other retinal scales to aid both object detection and object path

smoothness. Moreover, although we hypothesized that long term memory may allow

for better smoothing of object paths, is this really the case? Does including bounding

box class information improve the smoothness of object paths?

These questions show that the field of object detection and motion smoothness is

one with great potential for further scientific research and improvement.
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Appendix A

Determining Window Length Figures

Below are the figures for all the window size experiments on MOT1709 Object ID 1

for ALDLJ and ASAL from Chapter 3.

(a) Window size of 8. (b) Window size of 16.

(c) Window size of 32 (d) Window size of 64.
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(e) Window size of 96. (f) Window size of 128.

Figure A.1: Window length experiment for ALDLJ against timestep in frames. (Note
that a higher value is smoother).

(a) Window size of 8. (b) Window size of 16.

(c) Window size of 32 (d) Window size of 64.

(e) Window size of 96. (f) Window size of 128.

Figure A.2: Window length experiment for ASAL against timestep in frames. (Note
that a higher value is smoother).
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Appendix B

Determining Amplitude and Frequency Thresholds

Below are the plots for the amplitude and frequency thresholds experiment from

Chapter 3. We plot only at the amplitude threshold of 1e−5 and plot all of the

frequency thresholds.

Figure B.1: Left is amplitude (1e−5) and frequency(5) Threshold experiment for
ASAL. Right is amplitude (1e−5) and frequency (10) Threshold experi-
ment for ASAL (Note that higher is smoother). All figures are against
timestep in frames.
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Figure B.2: Left is amplitude (1e−5) and frequency(15) Threshold experiment for
ASAL. Right is amplitude (1e−5) and frequency (20) Threshold experi-
ment for ASAL (Note that higher is smoother). All figures are against
timestep in frames.

Figure B.3: On the left is amplitude (1e−5) and frequency (25) threshold experiment
for ASAL. On the right is amplitude (1e−5 and frequency (30) threshold
experiment for ASAL (Note that higher is smoother). All figures are
against timestep in frames.

Figure B.4: Figure is amplitude (1e−5) and frequency (35) threshold experiment for
ASAL (Note that higher is smoother). All figures are against timestep
in frames.
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Appendix C

Validating ALDLJ and ASAL using YOLO and

Retinanet

Below we plot the box plots of the mean ALDLJ and ASAL of the MOT dataset

using the ground truth as method 1, YOLOv3 as method 2 and Retinanet as method

3 from Chapter 3. All thresholds and window sizes used are those detailed in the

Subsections 3.4.3-3.4.4.

Figure C.1: Box plot of the ALDLJ values on entire MOT dataset.
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Figure C.2: Box plot of the ASAL values on entire MOT dataset.
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Figure C.3: Histogram plot of the ALDLJ mean values for Ground Truth (GT),
YOLOv3 and Retinanet.
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Figure C.4: Histogram plot of the ASAL mean values for Ground Truth (GT),
YOLOv3 and Retinanet.


