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Abstract. With the release of large-scale bone age assessment datasets
and competitions looking at solving the problem of bone age estimation,
there has been a large boom of machine learning in medical imaging
which has attempted to solve this problem. Although many of these ap-
proaches use convolutional neural networks, they often include some spe-
cialized form of preprocessing which is often lengthy. We propose using a
subpixel convolution layer in addition to an attention mechanism similar
to those developed by Luong et al. in order to overcome some of the
implicit problems with assuming particular placement and orientation of
radiographs due to forced preprocessing.
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1 Introduction

In radiology, bone age estimation is useful for a variety of reasons. Bone age is
an indicator of the skeletal and biological maturity of a person and can often be
different from the chronological age of an individual [6]. Bone age estimation is
often requested for diagnosing pediatric diseases which indicates the maturity of
a child’s skeletal structure [6, 1]. Other measures have far too much variation in
development to be used as established techniques for skeletal maturity [1].

Bone age estimation using radiographs is invaluable for pediatricians and
orthopedic surgeons [1]. The most employed methods for bone age estimation
are the Greulich and Pyle and Tanner-Whitehouse (TW2) atlases [1, 6, 7, 3]. A
radiologists spends approximately thirty minutes per patient, comparing the
radiograph to reference bone ages and estimating the age of the patient based
off these references [3, 4]. This can be quite a time-consuming task and the
accuracy and efficiency of the process is mainly determined by the experience of
the reviewer in question [4].

Computerized methods and computer-assisted automated systems can help
radiologists save precious time and increase accuracy at estimating bone age [4,
2]. The Radiological Society of North America (RSNA) has released a dataset
and held a competition to assess and evaluate machine learning and automated
bone age estimation methods [2]. In many of these methods, artificial neural
networks are used to preprocess the dataset and transform the radiograph into



some standardized form to create a better and augmented training dataset [2].
For the same reason, we explored the technique of super-resolution by adding a
subpixel convolution layer before the feature extractor in a deep convolutional
network based on the work of Shi et al. [8]. Our model thus super resolves the
input by extracting higher resolution information before passing it to feature
extraction phase.

The rest of the paper is organized as follows. Section 2 discusses the methods
and our proposed neural network model including the dataset and training and
evaluation protocol. Section 3 presents the results and some additional images.
Finally section 4 concludes the paper and discusses some future work.

2 Methods and Proposed Neural Network Model

We describe the dataset used to train the model and our proposed augmented
neural network model, in this section. We discuss in detail our implementation
and training/evaluating protocol as well as reasoning for our design choices.
Dataset: The dataset that was posted on Kaggle is from the Radiological Society
of North America’s pediatric bone age assessment challenge in 2018 [?]. The
dataset contains 12611 images each labelled with the gender and bone age of the
patient estimated by six reviewers. The ground truth was also provided in the
dataset [2].

In order to make sure the network does not predict based on the non-uniform
distribution of the dataset (see Fig.1) and train a good model, we resample the
dataset based on bone age and sex. Additionally, we separate an initial 15% of
the dataset to use for testing and another 25% for validation. The remainder is
the training set and is augmented using rotation, horizontal/vertical flips and
small affine transformations. This allows the network to learn the features that
are necessary to evaluate the bone age regardless of rotation and other affine
transformations of the image. It also allows the network to generalize better
to radiographs which it has not seen yet. Finally, the images are normalized
between 0-1 by dividing all pixel values by 255. [2].

(a) Male Distribution (b) Female Distribution (c) Total Distribution

Fig. 1: Distribution of bone age by gender and stand-alone of gender.

In order to make the regression smaller and more contained, we decide not
to regress over the actual bone age of the patients. Instead, we regress over
the z-score distributions of the patients’ bone age using equation 1. This keeps



the values that the network must regress much smaller and allows for generally
smaller gradients to flow through the network.

zn =
x− µ

2σ
(1)

Where x is the bone age, µ is the mean of the bone ages, σ is the standard
deviation of the bone ages and z is the z-score.

Model Architecture: As our base model, we use the network architecture that
won the bone age estimation contest. We add on three blocks of convolutional
neural network layers that lead to a subpixel phase shift layer. The subpixel
phase shift layer is presented in Shi et al.’s paper and transforms depth wise
information into space wise information [8]. The input image is then resized to
match the size of the output of the subpixel phase shift layer and concatenated
in order to feed into a feature extractor (such as VGG16 or Resnetv2 50). The
output of the feature extractor is passed on to an attention module composed
of a series of layers similar to those found in [5]. This accentuates particular
areas of the feature extractor’s output. The sex of the patient is also processed
and then concatenated with the output of the feature extractor and attention
module. Finally, two dense layers attempt to regress the z-score using this final
output. The network architecture can be seen in Fig.2.

Fig. 2: Basic architecture used for bone age estimation. Feature extractor is re-
placed with either VGG or Resnetv2 50.

Variants for the purpose of testing include a network without the phase shift
layer and any preceding convolutions, and two networks which either use the
VGG16 feature extractor or the Resnetv2 50 feature extractor. Imagenet trained
weights were loaded and the feature extractor was not trained. The final layers
of the feature extractors were fed into our regressor and the attention module
as illustrated in Fig.2.
Training and Evaluation: After we separate the dataset into the training,
validation and testing sets, we began training the network using the ADAM op-
timizer. The ADAM optimizer is an optimizer which computes adaptive learning
rates for differing parameters. The network is trained using a learning rate re-



duction scheduler, an early stopping mechanism to avoid overfitting and we only
save the network which performs best on the validation set. The input dimension
for the images is set to 260x260 and the batch size is set to 2 as any value higher
causes certain variant networks to fail as they cannot fit in the memory of one
graphics card. During training, the network is trained using a root mean squared
error (RMSE) loss (see equation 2), however, a custom metric of mean average
error is calculated so that we can directly compare performance when we relate
it to the differences in months between the predicted value and the label.

RMSE =

√∑n
i=1(Pi −Oi)2

n
(2)

3 Results

Our results focus on the performance of the network using subpixel layers versus
those that do not. In order to evaluate the networks, we decided to use the
testing set to report the mean average deviation (MAD) and root mean squared
error (RMSE) in both years and months. The networks reported in Table 1 have
only been trained for a max of 25 epochs. The state of the art performance from
the RSNA 2018 challenge was an ensemble network which was trained for 300
epochs on this problem [2]. It should be noted that the state of the art was
trained on the same dataset as our network, but uses an ensemble method in
order to outperform other methods. Additionally the images in Fig.3 provide
insight on each networks’ validation as it trains.

Table 1: Metrics of results comparing MAD score against RMSE in years and months.
Networks Mean Average Deviance (months) RMSE (years) RMSE (months)

RSNA state of the art[2] 6.12 - -

Resnetv2 50 with subpixel layers 36.31 ± 22.30 3.58 43.02

Resnetv2 50 with no subpixel layers 36.63 ± 23.00 3.60 43.26

VGG16 with subpixel layers 16.48 ± 13.46 1.77 21.28

VGG16 with no subpixel layers 17.93 ± 15.94 2.00 23.99

4 Future Works and Conclusion

Overall the use of the subpixel layers before the feature extraction network lead
to inconclusive results regarding an increase in performance of the network.
Although the networks with the subpixel layers do take longer to train and con-
verge, they also tend to be much smoother when they reach convergence (see
Fig.3). We have provided an example of the output of the super-resolution layer
as well as the input in Fig.4. What is interesting to note is that the super-resolved
hand includes higher activations in specific areas of the bone. Particularly, cer-
tain bone edges seem to be highly valued. This is the type of information we



Fig. 3: Validation mean average error. Top left is VGG with super resolution
layers, top right is VGG without the super resolution layers. Bottom left is
Resnet with super resolution layers and bottom right is Resnet without the
super resolution layers.

Fig. 4: The image on the far right is the input to the network, left is the super-
resolution output for the network with Resnet and the middle is the super-
resolution output for the network with VGG16 (both have brightness adjust-
ments in order to be able to view the hand better).

expect that the network is learning and propagating through the super-resolution
layers which is similar to those described in [6].

Although the networks we have described do not perform as well as many
of the other networks as in [7, 2], the purpose of this endeavour was to view
whether the subpixel convolution layers as introduced by [8] would be useful
for the purposes of extracting and super-resolving information that the network
deems important for the purposes of bone age estimation. In this endeavour, we
believe our results are inconclusive. Although all networks are trained the same
way and the subpixel convolution layers have lower MAD scores, and are more
consistent, they do not perform significantly better (see Table 1). Regardless,
the subpixel convolution layers are very useful and show that networks for bone



age estimation do not require more complex preprocessing steps but instead re-
quire important and useful layers that can aid or skip the preprocessing steps
altogether and a more varied data augmentation phase.

There is still much to be done in this field. Bone age estimation is still an
open problem in machine learning, although networks often perform better than
radiologists and often more consistent [2, 7] they are less trusted and not as well
understood. Additionally, the problem is quite simplistic and allows for a variety
of different approaches to be taken. This makes it a useful problem to evaluate
new and novel layers and how they perform in practical scenarios.

Future Works: There is still much to be done with the implementation of
the subpixel convolutional layers. For one, we attempted early on to develop a
multi-stage training step which required freezing particular layers of the network
in order to focus on training either the subpixel layers or the regression layers.
This proved to be unsuccessful, but we believe that modifying the training it may
be possible to get the multi-stage training step to work. This changes the fram-
ing of the problem and intuitively, we believe that this will increase the network
performance. Finally, looking into whether training from scratch or retraining
the feature extractor may be beneficial.
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